Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Parameter Identification for a Proton Exchange Membrane Fuel Cell Model

2020-04-14
2020-01-0858
The proton exchange membrane fuel cell (PEMFC) system has emerged as the state-of-art power source for the electric vehicle, but the widespread commercial application of fuel cell vehicle is restricted by its short service life. An enabling high accuracy model holds the key for better understanding, simulation, analysis, subsystem control of the fuel cell system to extract full power and prolong the lifespan. In this paper, a quasi-dynamic lumped parameters model for a 3kW stack is introduced, which includes filling-and-emptying volume sub-models for the relationships between periphery signals and internal states, static water transferring sub-model for the membrane, and empirical electrochemical sub-model for the voltage response. Several dynamic experiments are carried out to identify unknown parameters of the model.
Technical Paper

A Study of Parameter Inconsistency Evolution Pattern in Parallel-Connected Battery Modules

2017-03-28
2017-01-1194
Parallel-connected modules have been widely used in battery packs for electric vehicles nowadays. Unlike series-connected modules, the direct state inconsistency caused by parameter inconsistency in parallel modules is current and temperature non-uniformity, thus resulting in the inconsistency in the speed of aging among cells. Consequently, the evolution pattern of parameter inconsistency is different from that of series-connected modules. Since it’s practically impossible to monitor each cell’s current and temperature information in battery packs, considering cost and energy efficiency, it’s necessary to study how the parameter inconsistency evolves in parallel modules considering the initial parameter distribution, topology design and working condition. In this study, we assigned cells of 18650 format into several groups regarding the degree of capacity and resistance inconsistency. Then all groups are cycled under different environmental temperature and current profile.
Technical Paper

Modeling of Square Planar Spiral Coils Between Two Multilayer Media for Wireless Power Transfer Systems in Electric Vehicles

2017-03-28
2017-01-1209
Nowadays, wireless power transfer (WPT) gradually prevails and many researchers have devoted themselves to it because it is a safe, convenient and reliable way for recharging electric vehicles comparing to the conventional plug-in contact-based methods. Square coils are commonly used in WPT systems. However, there is few theoretical analysis of self- and mutual inductance of square coils between two magnetic shielding materials. In this paper, in order to study the spatial magnetic field distribution, the analytical model of n-turn square planar spiral coils between two semi-infinite multilayer media is developed based on the Maxwell equations and the Dual Fourier transformation. And then, by means of surface integrals, the self- and mutual inductance can be carried out, with respect to the main parameters of the WPT systems such as the operating frequency, the geometry feature of the coupling coils and the properties of the multilayer media.
Technical Paper

An Improved Battery Modeling Method Based on Recursive Least Square Algorithm Employing an Optimized Objective Function

2017-03-28
2017-01-1205
To monitor and guarantee batteries of electric vehicles in normal operation, battery models should be established primarily for the further application in battery management system such as parameter identification and state estimation including state of charge (SOC), state of health (SOH) and so on. In this paper, an improved battery modeling method is proposed which is based on the recursive least square (RLS) algorithm employing an optimized objective function. The proposed modified objective function not only includes the normal sum of voltage error squares between measured voltage and model output voltage but also introduces a new variable representing the sum of first order difference error squares for both kinds of voltages. This specialty can undoubtedly guarantee better agreement for the measured output and the model output. The battery model used in this paper is selected to be the conventional second order equivalent circuit model.
Technical Paper

Battery Impedance Measurement with Step Current of Different Amplitude under Temperature and State of Charge Control

2018-04-03
2018-01-0443
Electrochemical Impedance Spectroscopy (EIS) is often applied to analyze and describe the battery internal electrochemical processes. And the methods of battery state estimation including state of health diagnosis with electrochemical impedance have attracted a wide attention. In the paper, a novel fast impedance measuring method based on wavelet transform with a step excitation current is proposed and further studied. With the method, the current generated by the electric vehicle and the responding voltage of the battery can be utilized to calculate and provide the battery impedance for the battery management system. Taking into account the varying amplitude of the current and the battery states, the battery impedance was measured with step excitation signals of different amplitude at different temperature and state of charge (SOC).
Technical Paper

Impedance Modeling and Aging Research of the Lithium-Ion Batteries Using the EIS Technique

2019-04-02
2019-01-0596
As the core component of electric vehicles (EVs), batteries attach increasingly general attention along with the rapid expansion of electric vehicle market. Battery performance effect directly the safety and reliability of the EVs, so its managing technologies are more and more crucial. Among them, the methods of estimating the state of health (SoH) and predicting remaining useful life become the focuses, which are essential to ensure their dependability and optimum performance over time. This paper mainly focuses on impedance modeling and aging research (aging diagnosis and life prediction) of lithium-ion batteries. Electrochemical impedance spectroscopy (EIS) technique is used to obtain impedance characteristic of batteries. On the one hand, equivalent circuit modeling (ECM) can be motivated by EIS, with the goal to fit measured impedance data using circuit elements.
Technical Paper

On-line Lithium-Ion Battery State-of-Power Prediction by Twice Recursive Method Based on Dynamic Model

2019-04-02
2019-01-1311
State-of-Power (SoP) prediction of Li-ion battery is necessary in battery management system for electric vehicles in order to deal with limited conditions, prevent overcharge and over discharge situations, increase the life of the battery and provide effective battery operation. This article suggests a method to on-line predict the 10-s charge and discharge peak power of Li-ion battery by twice recursions. First with the dynamic battery model we use the first recursion based on a least square method to get parameters which are influenced by the state of charge of Li-ion battery and temperature, etc. The dynamic model is an equivalent circuit model. Current and voltage are input online into the battery model. By recursive least square method the parameters are updated in real time. Moreover, when we use a recursive method to get real-time parameters, we add an extra proper factor to abandon old datum, which increases the real-time capability of state-of-power prediction.
Technical Paper

Study on the Constant Voltage, Current and Current Ramping Cold Start Modes of Proton Exchange Membrane Fuel Cell

2021-04-06
2021-01-0746
The cold-start of proton exchange membrane fuel cell (PEMFC) has been one of the technical challenges for fuel cell vehicle table ommercialization. In this study, a one-dimensional cold start transient model of PEMFC was developed for the transfer of water, heat, electrons and protons during the cold start process. Different loading modes, including constant voltage, constant current, and current ramping, were adopted for fuel cell cold starting analysis, respectively. The internal water-heat transfer within fuel cell was investigated under different loading modes. The results show that in the constant current mode, for the high current, the cold start process can produce more heat than other modes, which can increase fuel cell temperature rapidly. However, this process may easily fail before the ice fully covers the cathode catalyst layers (CL).
Technical Paper

Experiment Studies of Charging Strategy for Lithium-Ion Batteries

2019-04-02
2019-01-0792
Regarding the lithium-ion batteries used in the electric vehicle, charging time and charging efficiency are the concern of the public. In this paper, a lot of experiments were conducted to investigate the common charging strategies, including the CC-CV (constant current-constant voltage) charging and the pulse current charging, for the LiFePO4 batteries, which are still widely used in commercial vehicles. Charging temperature and the charging current in the CC phase are the main influence factors to be studied for the CC-CV charging strategy, and the contribution of the CC phase and CV phase to the whole charging is analyzed from three aspects, including the time percent, charging energy efficiency and the capacity of battery at different temperatures and charging current.
Technical Paper

SOC Estimation of Battery Pack Considering Cell Inconsistency

2019-04-02
2019-01-1309
Range anxiety problem has always been one of the biggest concern of consumers for pure electric vehicles. Accurate driving range prediction is based on accurate lithium-ion battery pack SOC (State of Charge) estimation. In this article, a complete SOC estimation algorithm is proposed from cell level to battery pack level. To begin with, the equivalent circuit model (ECM) is applied as the model of battery cell. ECM parameters are identified every 10% SOC interval through genetic algorithm. The dual extended Kalman filtering (DEKF) algorithm is adopted for cell-level SOC and ohmic resistance R0 estimation. The estimation accuracy of cell SOC and R0 is verified under NEDC dynamic working condition. The cell-level SOC estimation error is below 1%. However, cell inconsistency can always result in inaccurate cell SOC estimation inside the battery pack. The impact of initial SOC inconsistency and internal resistance inconsistency between cells on battery pack SOC is specifically analyzed.
Technical Paper

Comparative Thermal Runaway Behavior Analysis of High-Nickel Lithium-Ion Batteries with Different Specifications

2022-03-29
2022-01-0706
High-nickel lithium-ion batteries extend the driving mileage of electric vehicles (EVs) to 600km without much cost increment. However, thermal accidents commonly occur due to their poor thermal stability, such as thermal runaway. To address the issue, a comprehensive analysis of the thermal runaway behavior of high-nickel lithium-ion batteries with different specifications is conducted. The thermal runaway process is divided into five stages based on self-heating generation, voltage drop, safety valve rupture, and thermal runaway triggering for the three tested cells. The three tested cells demonstrate similar behaviors during each stage of the thermal runaway process. However, there are still apparent differences between their characteristics. This study analyses the thermal runaway features from the following aspects: (i) characteristic temperature; (ii) the relationship between sudden voltage drop and characteristic temperatures; (iii) temperature recovery; (iv) thermodynamics.
Technical Paper

Thermal Model of High-Power Lithium Ion Battery Under Freezing Operation

2018-04-03
2018-01-0445
Lithium ion battery is considered as one of the most possible energy storage equipment for new energy vehicles (EV, HEV, etc.) because of the advantages of long cycle life, high power density and low self-discharge rate. However, under freezing condition high power battery suffers of significant performances losses. For example, they would suffer from significant power capability losses and poor rate performance, which would restrict the availability to delivery or to gain of high current in transient conditions. To evaluate those performance drawbacks and to make an efficient design, good mathematical models are required for system simulation especially for battery thermal management. In this paper, a three-dimensional homogenization thermal model of a 20 Ah prismatic lithium ion battery with LiFePO4 (LFP) cathode is described.
Technical Paper

Experimental Study on Effect of State of Charge on Thermal Runaway Characteristics of Commercial Large-Format NCM811 Lithium-Ion Battery

2023-04-11
2023-01-0136
The application of Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode-based lithium-ion batteries (LIBs) has alleviated electric vehicle range anxiety. However, the subsequent thermal safety issues limit their market acceptance. A detailed analysis of the failure evolution process for large-format LIBs is necessary to address the thermal safety issue. In this study, prismatic cells with nominal capacities of 144Ah and 125Ah are used to investigate the thermal runaway (TR) characteristics triggered by lateral overheating. Additionally, TR characteristics under two states of charge (SoCs) (100% and 5%) are discussed. Two cells with 100% SoC exhibit similar characteristics, including high failure temperature, high inhomogeneity of temperature distribution, multi-points jet fire, and significant mass loss. Two cells with 5% SoC demonstrate only a slight rupture of the safety valve and the emission of white smoke.
X