Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Influence of Oxy-Fuel Combustion on Engine Operating Conditions and Combustion Characteristics in a High Speed Direct Injection (HSDI) Diesel Engine under Homogenous Charge Compression Ignition (HCCI) Mode

2020-04-14
2020-01-1138
Oxyfuel combustion and nitrogen-free combustion coupled with Carbon Capture and Storage (CCS) techniques have been recently proposed as an efficient method to achieve carbon free emissions and to improve the combustion efficiency in diesel engines. In this study, a 3-D computational fluid dynamics model has been used to evaluate the influence of oxyfuel-HCCI combustion on engine operating conditions and combustion characteristics in a HSDI diesel engine. Investigations have conducted using four different diluent strategies based on the volume fraction of pure oxygen and a diluent gas (carbon dioxide). The first series of investigations has performed at a constant fuel injection rating at which 4.4 mg of fuel has injected per cycle. In the second part of analysis, the engine speed was maintained at 1500 rev/min while the engine loads were varied by changing the fuel injection rates in the range of 2.8 to 5.2 mg/cycle.
Technical Paper

Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine

2017-03-28
2017-01-0576
Wall temperature in GDI engine is influenced by both water jacket and gas heat source. In turn, wall temperature affects evaporation and mixing characteristics of impingement spray as well as combustion process and emissions. Therefore, in order to accurately simulate combustion process, accurate wall temperature is essential, which can be obtained by conjugate heat transfer (CHT) and piston heat transfer (PHT) models based on mapping combustion results. This CHT model considers temporal interaction between solid parts and cooling water. This paper presents an integrated methodology to reliably predict in-cylinder combustion process and temperature field of a 2.0L GDI engine which includes engine head/block/gasket and water jacket components. A two-way coupling numerical procedure on the basis of this integrated methodology is as follows.
Technical Paper

Analysis of the Influence of Inlet Temperature on Oxy-Fuel Combustion in an HSDI Diesel Engine

2022-06-14
2022-37-0003
Carbon Capture and Storage (CCS) techniques in combination with oxy-fuel combustion have been applied as an effective way to achieve nitrogen-free combustion and zero-carbon emissions. The present study has been carried out computationally in the framework of a European project (RIVER) (funded by Interreg North-West Europe) to explore the effect of intake charge temperature on oxy-fuel combustion in an HSDI diesel engine under HCCI combustion mode. Experimental data obtained from a Ford Puma common-rail diesel engine for a conventional part-load condition at 1500 rev/min and 6.8 bar IMEP have been used to validate the CFD model. To simulate the combustion process of HCCI, a reduced chemical n-heptane-n-butanol-PAH model has been adopted. The model has 349 elementary reactions and 76 species. The simulation has been carried out at five different intake charge temperatures (140°C, 160°C, 180°C, 200°C, and 220°C) and five different intake oxygen percentages (15%, 17%, 19%, and 21% v/v).
X