Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Accuracy of a Driver Model with Nonlinear AutoregRessive with eXogeous Inputs (NARX)

2018-04-03
2018-01-0504
Most driving assist systems are uniformly controlled without considering differences in characteristics of individual drivers. Drivers may feel discomfort, nuisance, and stress if the system functions differently from their characteristics. The present study reduced these side effects for systems with a highly accurate driver model. The model was constructed using Nonlinear AutoregRessive with eXogeous inputs (NARX), which has a learning function and estimates the driving action of a driver. The model was constructed for one driving condition yet can be applied to other driving conditions. If one model can be applied to many driving conditions, a system can construct as minimum requirements. The driver decelerated while approaching the target at the tail of a traffic jam on a highway. A driver model was constructed for the driver’s braking action. The experimental condition was 11 data measurements from 50 to 130 km/h made at intervals of 10 km/h.
Technical Paper

Driving Characteristics when Autonomous Driving Change to Driver in Low Alertness and Awake from Sleeping

2018-04-03
2018-01-1081
Two experiments were carried out to clarify the characteristics of manual driving when the task of vehicle control is transferred from an autonomous driving system at SAE levels 3 and 5 to manual driving. The first experiment involved another vehicle merging into the lane of the host vehicle from the left side of a highway. This experiment simulated the functional limit of a level 3 system with the driver in a situation of low alertness. When the other vehicle changed lane in front of the host vehicle, the driving task was transferred from the system to the driver. The second experiment simulated a driver travelling along a city road with manual driving after the driver used the system in a situation of sleeping on a highway. In this experiment, a pedestrian emerges from a blind spot along a city road, and the driver needs to brake having recently awaken. In the first experiment, the driver with low alertness could not control the vehicle when manually driving.
Technical Paper

Effect of Driver Posture on Driving Characteristics when Control is Passed from an Autonomous Driving System to a Human Driver

2018-04-03
2018-01-1173
SAE International defines six levels of autonomous driving system, four of which include a change of control from the system to the driver in certain conditions. When vehicle control changes from the system to a human driver, a safe transition time is necessary. The present study focuses on level 3 automation, in which the system controls driving in ordinary conditions, but the human driver is expected to intervene in emergency situations. The aim of this study was to investigate the relationship between driver posture and transition time. Driver posture included four components: backrest angle, seat position, foot position, and arm position. These were adjusted to investigate a total of 30 posture patterns. In addition, the situation in which the driver was not watching the road, but instead using a tablet computer was investigated. The driver’s braking and steering reaction times were measured for a highway-driving scenario in which a truck dropped cargo in front of the vehicle.
X