Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Construction and Simulation Analysis of Driving Cycle of Urban Electric Logistic Vehicles

2020-04-14
2020-01-1042
In order to reflect the actual power consumption of logistics electric vehicles in a city, sample real vehicle road data. After preprocessing, the short-stroke analysis method is used to divide it into working blocks of no less than 20 seconds. Based on principal component analysis, three of the 12 characteristic parameters were selected as the most expressive. K-means clustering algorithm is adopted to obtain the proportions of various short strokes, according to the proportion, select the short stroke with small deviation degree to combine, and construct the driving cycle, it has the characteristics of low average speed, high idle speed ratio and short driving distance. AVL-cruise software builds the vehicle model and runs the driving cycle of urban logistic EV. Compared with WLTC, the difference in power consumption is 34.3%, which is closer to the actual power consumption, the areas with the highest motor speed utilization are concentrated only in the idle area.
Technical Paper

Research on Electromagnetic Shielding Technology of Special Vehicle-Mounted Shelter Based on Material-Structure Co-Design

2022-03-29
2022-01-0351
In order to meet the needs of modern warfare, the research on electromagnetic shielding technology of military vehicle-mounted shelters and improving the electromagnetic shielding performance of shelters will play an increasingly important role in the protection of advanced electronic equipment. At the same time, it is also the core of the development of military vehicle-mounted shelters. In this paper, by selecting and comparing different materials, using multi-layer composite materials to design the military vehicle-mounted shelter. The shelter body comprises a front wallboard, a rear wallboard, a left wallboard, a right wallboard, an upper wallboard and a lower wallboard.
Technical Paper

Optimal Design and Forming Analysis of the Stamping Process for Front Wall of Automobile Considering Springback Compensation Technology

2021-04-06
2021-01-0269
In this paper, for the front wall of a certain automobile, the defects of drawing splits, excessive thinning and excessive springback in the sheet metal forming process are analyzed and predicted. The stamping process has been simulated. The influence of different technical parameters (blank holder force, stamping speed, die gap and friction coefficient) on the forming results was further investigated using the center composite experiment. Through preliminary finite element simulation, the main drawing defects and trimming springback were analyzed. The second-order response surface model was established to perform the multi-objective optimization design of the stamping process with a NGSA-II genetic algorithm. Based on the relevant simulation data, multiple springback compensations are performed on the die surface to reduce the final springback of the part to meet the requirements.
X