Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Influence of Injector Diameter (0.2-1.2 mm range) on Diesel Spray Combustion: Measurements and CFD Simulations

2014-04-01
2014-01-1419
In this study, the influence of injector diameter on the combustion of diesel sprays in an optically accessible combustion chamber of marine engine dimensions and conditions has been investigated experimentally as well as numerically. Five different orifice diameters ranging between 0.2 and 1.2 mm have been considered at two different ambient temperatures: a “cold” case with 800 K and a “warm” case with 900 K, resulting in a total of ten different test conditions. In the experiment, the reactive spray flames were characterized by means of high-speed OH* chemiluminescence imaging. The measurements revealed a weak impact of the injector diameter on ignition delay (ID) time and flame lift-off length (LOL) whereas the influence of ambient temperature was found to be more pronounced, consistent with former studies in the literature for smaller orifice diameters.
Technical Paper

Ignition Behaviour of Marine Diesel Fuels under Engine Like Conditions

2014-10-13
2014-01-2656
In view of the large (and further increasing) range of fuels applied in marine diesel engines, there is a clear need for obtaining a better understanding of the effect of those fuels on the key in-cylinder processes governing the combustion characteristics of these engines. For this purpose, a constant volume chamber representative of the combustion system of large marine diesel engines has been complemented with a device allowing the investigation of small fuel quantities and the resulting setup has been used for studying the combustion behaviour of typical marine diesel fuels at conditions relevant for large marine two-stroke diesel engines. Specifically, two clearly distinct heavy fuel oils have been compared to a light fuel oil. Two optical measurement techniques were used to complement the findings made on the basis of rate of heat release analysis.
X