Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Lab Study of Urea Deposit Formation and Chemical Transformation Process of Diesel Aftertreatment System

2017-03-28
2017-01-0915
Diesel exhaust fluid, DEF, (32.5 wt.% urea aqueous solution) is widely used as the NH3 source for selective catalytic reduction (SCR) of NOx in diesel aftertreatment systems. The transformation of sprayed liquid phase DEF droplets to gas phase NH3 is a complex physical and chemical process. Briefly, it experiences water vaporization, urea thermolysis/decomposition and hydrolysis. Depending on the DEF doser, decomposition reaction tube (DRT) design and operating conditions, incomplete decomposition of injected urea could lead to solid urea deposit formation in the diesel aftertreatment system. The formed deposits could lead to engine back pressure increase and DeNOx performance deterioration etc. The formed urea deposits could be further transformed to chemically more stable substances upon exposure to hot exhaust gas, therefore it is critical to understand this transformation process.
Technical Paper

Development and Demonstration of a Soot Generator Integrated Bench Reactor

2014-04-01
2014-01-1589
Experimental evaluation of soot trapping and oxidation behaviors of various diesel particulate filters (DPF) has been traditionally hampered by several experimental difficulties, such as the deposition of soot particles with well-characterized and consistent properties, and the tracking of the soot oxidation rate in real time. In the present study, an integrated bench flow-reactor system with a soot generator has been developed and its capabilities were demonstrated with regards to: Consistently and controllably loading soot on DPF samples; Monitoring the exhaust gas composition by FTIR, including quantification of the soot oxidation rate using CO and CO2; Measuring soot oxidation characteristics of various DPF samples. Soot particles were produced from a laminar propane co-flow diffusion flame.
Journal Article

Model-Based Approaches in Developing an Advanced Aftertreatment System: An Overview

2019-01-15
2019-01-0026
Cummins has recently launched next-generation aftertreatment technology, the Single ModuleTM aftertreatment system, for medium-duty and heavy-duty engines used in on-highway and off-highway applications. Besides meeting EPA 2010+ and Euro VI regulations, the Single ModuleTM aftertreatment system offers 60% volume and 40% weight reductions compared to current aftertreatment systems. In this work, we present model-based approaches that were systematically adopted in the design and development of the Cummins Single ModuleTM aftertreatment system. Particularly, a variety of analytical and experimental component-level and system-level validation tools have been used to optimize DOC, DPF, SCR/ASC, as well as the DEF decomposition device.
Journal Article

Sulfur Poisoning of a Cu-SSZ-13 SCR Catalyst under Simulated Diesel Engine Operating Conditions

2021-04-06
2021-01-0576
Cu-SSZ-13 catalysts are widely used for diesel aftertreatment applications for NOx (NO and NO2) abatement via selective catalytic reaction (SCR) due to their high conversion efficiency and excellent hydrothermal stability. Diesel engine exhaust contains small amounts of SOx due to the combustion of sulfur compounds in diesel fuel. The engine out SOx level mainly depends on the sulfur content in the diesel fuel. The presence of SOx from engine exhaust can deteriorate the SCR performance of Cu-SSZ-13 catalysts in real-world applications. This work is focused on the sulfur-induced deactivation process of a Cu-SSZ-13 catalyst under a range of simulated diesel engine operating conditions. Two catalyst deactivation modes, namely chemical poisoning and physical poisoning, are identified, primarily depending on the operating temperature. Chemical poisoning mainly results from the interaction between SOx and Cu species within the zeolite framework.
X