Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

2015-04-14
2015-01-0806
This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cotton seed biodiesel while assessing the engine's multi-fuel capability. Millions of tons of cotton seeds are available in the south of the US every year and approximately 10% of oil contained in the seeds can be extracted and transesterified. An investigation of combustion, emissions, and efficiency was performed using mass ratios of 20-50% cotton seed biodiesel (CS20 and CS50) in ultra-low sulfur diesel #2 (ULSD#2). Each investigation was run at 2400 rpm with loads of 4.2 - 6.3 IMEP and compared to the reference fuel ULDS#2. The ignition delay ranged in a narrow interval of 0.8-0.97ms across the blends and the heat release rate showed comparable values and trends for all fuel blends. The maximum volume averaged cylinder temperature increased by approximately 100K with each increase in 1 bar IMEP load but the maximum remained constants across the blends.
Technical Paper

Sound and Vibration Levels of CI Engine with Synthetic Kerosene and n-Butanol in RCCI

2016-04-05
2016-01-1306
Diesel engines provide the necessary power for accomplishing heavy tasks across the industries, but are known to produce high levels of noise. Additionally, each type of fuel possesses unique combustion characteristics that lead to different sound and vibration signatures. Noise is an indication of vibration, and components under excessive vibration may wear prematurely, leading to repair costs and downtime. New fuels that are sought to reduce emissions, and promote sustainability and energy independence must be investigated for compatibility from a sound and vibrations point-of-view also. In this research, the sound and vibration levels were analyzed for an omnivorous, single cylinder, CI research engine with alternative fuels and an advanced combustion strategy, RCCI. The fuels used were ULSD#2 as baseline, natural gas derived synthetic kerosene, and a low reactivity fuel n-Butanol for the PFI in the RCCI process.
X