Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

2015-04-14
2015-01-0806
This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cotton seed biodiesel while assessing the engine's multi-fuel capability. Millions of tons of cotton seeds are available in the south of the US every year and approximately 10% of oil contained in the seeds can be extracted and transesterified. An investigation of combustion, emissions, and efficiency was performed using mass ratios of 20-50% cotton seed biodiesel (CS20 and CS50) in ultra-low sulfur diesel #2 (ULSD#2). Each investigation was run at 2400 rpm with loads of 4.2 - 6.3 IMEP and compared to the reference fuel ULDS#2. The ignition delay ranged in a narrow interval of 0.8-0.97ms across the blends and the heat release rate showed comparable values and trends for all fuel blends. The maximum volume averaged cylinder temperature increased by approximately 100K with each increase in 1 bar IMEP load but the maximum remained constants across the blends.
Technical Paper

Sound and Vibration Levels of CI Engine with Synthetic Kerosene and n-Butanol in RCCI

2016-04-05
2016-01-1306
Diesel engines provide the necessary power for accomplishing heavy tasks across the industries, but are known to produce high levels of noise. Additionally, each type of fuel possesses unique combustion characteristics that lead to different sound and vibration signatures. Noise is an indication of vibration, and components under excessive vibration may wear prematurely, leading to repair costs and downtime. New fuels that are sought to reduce emissions, and promote sustainability and energy independence must be investigated for compatibility from a sound and vibrations point-of-view also. In this research, the sound and vibration levels were analyzed for an omnivorous, single cylinder, CI research engine with alternative fuels and an advanced combustion strategy, RCCI. The fuels used were ULSD#2 as baseline, natural gas derived synthetic kerosene, and a low reactivity fuel n-Butanol for the PFI in the RCCI process.
Technical Paper

Performance Evaluation - Combustion, Emissions and Vibrations-of n-Butanol Binary Mixture with ULSD in an Indirect Injection Engine

2017-03-28
2017-01-0875
This paper investigates the performance of an indirect injection (IDI) diesel engine fueled with Bu25, 75% ultra-low sulfur diesel (ULSD#2) blended with 25% n-butanol by mass. N-butanol, derivable from biomass feedstock, was used given its availability as an alternative fuel that can supplement the existing limited fossil fuel supply. Combustion and emissions were investigated at 2000 rpm across loads of 4.3-7.2 bar indicated mean effective pressure (IMEP). Cylinder pressure was collected using Kistler piezoelectric transducers in the precombustion (PC) and main combustion (MC) chambers. Ignition delays ranged from 0.74 - 1.02 ms for both operated fuels. Even though n-butanol has a lower cetane number, the high swirl in the separate combustion chamber would help advance its premixed combustion. The heat release rate of Bu25 became initially 3 J/crank-angle-degree (CAD) higher than that of ULSD#2 as load increased to 7.2 bar IMEP.
Technical Paper

Performance of an Indirect Injected Engine Operated with ULSD#2 Blended with Fischer-Tropsch Synthetic Kerosene

2017-03-28
2017-01-1283
This study investigates the use of a natural gas derived fuel, synthetic Fischer-Tropsch (F-T) paraffinic kerosene, in both it’s neat form and blended with ultra-low sulfur diesel (ULSD#2), in a naturally aspirated indirect injected engine. A blend of a mass ratio with 20% of the F-T fuel and 80% ULSD#2 was studied for its combustion characteristics, emissions, and efficiency compared to conventional ULSD#2 at a constant speed of 2400 RPM and operating at IMEP range from 4.5 to 6.5 bar. The F-T blend produced ignition delays 17% shorter than ULSD#2 resulting in slightly lower peak apparent heat release rates (AHRR) along with decreased peak combustion temperatures, by up to 50°C. Nitrogen Oxide (NOx) emissions of the F-T blend decreased by 4.0% at 4.5 bar IMEP and at negligible amounts at 6.5 bar IMEP. The F-T blend decreased soot significantly at 5.4 bar IMEP by 40%. Efficiencies of the F-T blend were similar to ULSD#2.
Technical Paper

Development and Implementation of a Common Rail Fuel Injection System for Flexible Combustion for an Experimental Medium Duty Diesel Engine

2017-03-28
2017-01-0790
In order to advance the current research engine to operate in advanced combustion modes such as reactivity controlled compression ignition RCCI a diesel common rail fuel injection system for the experimental research engine has been designed and developed through testing the hydraulic, electrical and electronics, mechanical subcomponents, and the controls strategies. This study presents the process taken based on the verification and validation model of design and development for the fuel injection system incorporating hardware-in-the-loop (HIL) testing prior to engine operation and subsequent engine validation. Software verification was completed through signal converting circuits to confirm precise injection timing and to test the system in a mean effective model to incorporate a PI speed controller along with consistent rail pressure.
Technical Paper

Poultry Fat FAME Biodiesel Blends Characteristics and Performance in an IDI Engine for APU Applications

2014-04-01
2014-01-1265
This study investigates the combustion, emissions, and performance of biodiesel produced from poultry fat FAME (fatty acid methyl esters) in an indirect injection (IDI) engine. The poultry fat FAME blends were evaluated against ultra-low sulfur diesel #2 (ULSD#2) at 2600 rpm at 100% engine load. The tested biodiesel blends of poultry fat FAME included B20 to B50 measured by weight percentage in ULSD#2. Before engine testing, the energy content, dynamic viscosity, and thermal properties were measured for all poultry fat blends, 100% poultry fat FAME, and ULSD#2. Once the preliminary data had been obtained, it was determined that a blend of up to 50% poultry fat FAME would be within ASTM6751 requirements. The ignition delay stayed constant at 13 CAD for all blends tested and the gross heat release for ULSD#2 and B50 were 24.4 and 25.0 J/deg respectively.
Technical Paper

Comparative Analysis of the Lubrication, Friction, and Wear of Injection System Materials, with Synthetic Paraffinic Kerosene, Jet-A, and ULSD

2023-10-31
2023-01-1633
Alternative fuels are sought after because they produce lower emissions and sometimes, they have feedstock and production advantages over fossil fuels, but their wear effects on engine components are largely unknown. In this study, the lubricity properties of a Fischer-Tropsch Gas-to-Liquid alternative fuel (Synthetic Paraffinic Kerosene-S8) and of Jet-A fuel were investigated and compared to those of Ultra Low Sulphur Diesel (ULSD). A pin-on-disk tribometer was employed to test wear and friction for a material pair of an AISI 316 steel ball on an AISI 1018 steel disk when lubricated by the fuels in this research work. Advanced digital microscopy was used to compare the wear patterns of the disks. Viscosity and density analysis of the tested fluids were also carried out. Tribometry for the fuel showed that S8 fell between Jet-A and ULSD when friction force was calculated and showed higher wear over time and after each test when compared to that of Jet-A and ULSD.
X