Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Robust Design of Jet Pump

2014-04-01
2014-01-0416
The primary objective of this study was to provide an efficient system solution for the removal of fuel from an Active Drain Liquid Trap (ADLT), used in automotive vent systems; using a Jet Pump. The Voice of Customer was collected and analyzed. The two major focus areas identified were - improvement in robustness of Jet Pump performance and maximization of induced flow. Robust design of such a Jet Pump was carried out using Taguchi's Orthogonal Crossed Array based parameter design, through computer simulation. Two Jet Pumps were designed for Gasoline based vehicles; one with the conventional approach and the other with the robust design approach. Both were put on a field trial, integral with the vent system. The robust design showed a tremendous improvement in performance over the conventional design, due to the elimination of cavitation and insensitivity to noises.
Technical Paper

Common Design of Jet Pump for Gasoline and Diesel Based Vehicles

2015-04-14
2015-01-0458
The objective of this paper is to provide a robust design solution for a Jet pump which is used for fuel removal from an Active Drain Liquid Trap (ADLT). This jet pump can work for both Gasoline and Diesel based automobiles. The major focus area of this paper, is improvement in the robustness of Jet pump performance parameters, such as motive flow and induced flow. A design study for such a two fuel application was first initiated using Taguchi's robust design approach. In order to reduce the inventory complexity and cost, a common design possibility was then addressed. Two approaches for robust design have been discussed, namely the Taguchi Methodology (Orthogonal Cross Array based design) and the Dual RSM (Response Surface Methodology) Technique. Results show that the Dual RSM provides improved performance with reduced variation, as compared to Taguchi's approach.
X