Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Investigation of a CRM65 Wingtip Mockup under Appendix C and Appendix O Icing Conditions

2023-06-15
2023-01-1386
Research institutes and companies are currently working on 3D numerical icing tools for the prediction of ice shapes on an international level. Due to the highly complex flow situation, the prediction of ice shapes on three-dimensional surfaces represents a challenge. An essential component for the development and subsequent validation of 3D ice accretion codes are detailed experimental data from ice shapes accreted on relevant geometries, like wings of a passenger aircraft for example. As part of the Republic of Austria funded research project JOICE, a mockup of a wingtip, based on the National Aeronautics and Space Administration common research model CRM65 was designed and manufactured. For further detailed investigation of electro-thermal de-icing systems, various heaters and thermocouples were included.
Technical Paper

Experimental Simulation of Natural-Like Snow Conditions in the Rail Tec Arsenal (RTA) Icing Wind Tunnel

2023-06-15
2023-01-1407
The simulation of natural-like snow conditions in a controlled environment such as an Icing Wind Tunnel (IWT) is a key component for safe, efficient and cost-effective design and certification of future aircraft and rotorcraft. Current capabilities do not sufficiently match the properties of natural snow, especially in terms of size and morphology. Within the Horizon 2020 project ICE GENESIS, a new technology has been developed aiming to better recreate natural snowflakes. The focus of the newly developed system was the generation of falling snow in a temperature range of +1°C to -4°C. Ground measurements and flight test campaigns have been performed to better characterize these conditions and provide requirements for wind tunnel facilities. The calibration results of the new snow generation system as well as snow accretion data on a NACA0012 test article with a chord length of 0.377 m are presented.
Journal Article

Aerodynamic Comparison of Freezing Rain and Freezing Drizzle Conditions at the RTA Icing Wind Tunnel

2019-06-10
2019-01-2023
The simulation of icing conditions in icing wind tunnels (IWTs) is a significant element in the certification of aircraft components and offers unique possibilities for research purposes. Up to 2014 only the conditions defined in Appendix C of the EASA Certification Specification 25, respectively the FAA Code of Federal Regulations Title 14 Part 25 were used for the certification processes in IWTs. In addition, Appendix O was introduced in 2014 to cover the supercooled large droplet (SLD) icing conditions of freezing drizzle and freezing rain, which pose a potential risk for flight safety. The simulation of SLD icing in IWTs is, due to the different behavior of the large droplets, very challenging and not all required conditions have successfully been recreated yet. RTA Rail Tec Arsenal Fahrzeugversuchsanlage GmbH has focused on the simulation of in-flight icing conditions since 2012 and increased effort was put in the simulation of SLDs in recent years.
X