Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Development of SLD Capabilities in the RTA Icing Wind Tunnel

2017-06-29
2017-01-9001
RTA Rail Tec Arsenal Fahrzeugversuchsanlage GmbH has focused on the simulation of in-flight icing conditions since 2012. Following the successful implementation of the icing conditions specified in EASA CS-25 Appendix C, it was expected that the facility could also be used to simulate the SLD conditions required by EASA CS-25 Appendix O. This paper sets forth theoretical considerations concerning the selection of suitable nozzles and their operation in the existing facility. The transport of large droplets through the contraction nozzle was simulated using a CFD program. The results then served as a basis for deriving secondary droplet breakup. The validations carried out confirm the theoretical considerations and identify potential limits and open research questions.
Technical Paper

Experimental Investigation of a CRM65 Wingtip Mockup under Appendix C and Appendix O Icing Conditions

2023-06-15
2023-01-1386
Research institutes and companies are currently working on 3D numerical icing tools for the prediction of ice shapes on an international level. Due to the highly complex flow situation, the prediction of ice shapes on three-dimensional surfaces represents a challenge. An essential component for the development and subsequent validation of 3D ice accretion codes are detailed experimental data from ice shapes accreted on relevant geometries, like wings of a passenger aircraft for example. As part of the Republic of Austria funded research project JOICE, a mockup of a wingtip, based on the National Aeronautics and Space Administration common research model CRM65 was designed and manufactured. For further detailed investigation of electro-thermal de-icing systems, various heaters and thermocouples were included.
Technical Paper

Comparison of Numerical Simulations with Experimental Data for an Electrothermal Ice Protection System in Appendix O Conditions

2023-06-15
2023-01-1396
This paper provides information on the comparison of numerical simulations with experimental data for an electrothermal ice protection system with a focus on Appendix O [1] Freezing Drizzle (FZDZ) and Freezing Rain (FZRA) conditions. The experimental data is based on a test campaign with a 2D NACA23012 wing section in the RTA Icing Wind Tunnel in Vienna. 22 icing runs (all either unheated or in anti-ice mode) were performed in total and all residual ice shapes were documented by means of high-resolution 3D scanning. Unheated FZDZ and FZRA reference as well as heated cases with different heater configurations are presented. The experimental results are compared to numerical predictions from two different icing codes from AeroTex GmbH (ATX) and the University of Applied Sciences FH JOANNEUM (FHJ) in Graz. The current capabilities of the codes were assessed in detail and regions for improvement were identified.
Technical Paper

Experimental Simulation of Natural-Like Snow Conditions in the Rail Tec Arsenal (RTA) Icing Wind Tunnel

2023-06-15
2023-01-1407
The simulation of natural-like snow conditions in a controlled environment such as an Icing Wind Tunnel (IWT) is a key component for safe, efficient and cost-effective design and certification of future aircraft and rotorcraft. Current capabilities do not sufficiently match the properties of natural snow, especially in terms of size and morphology. Within the Horizon 2020 project ICE GENESIS, a new technology has been developed aiming to better recreate natural snowflakes. The focus of the newly developed system was the generation of falling snow in a temperature range of +1°C to -4°C. Ground measurements and flight test campaigns have been performed to better characterize these conditions and provide requirements for wind tunnel facilities. The calibration results of the new snow generation system as well as snow accretion data on a NACA0012 test article with a chord length of 0.377 m are presented.
Journal Article

Aerodynamic Comparison of Freezing Rain and Freezing Drizzle Conditions at the RTA Icing Wind Tunnel

2019-06-10
2019-01-2023
The simulation of icing conditions in icing wind tunnels (IWTs) is a significant element in the certification of aircraft components and offers unique possibilities for research purposes. Up to 2014 only the conditions defined in Appendix C of the EASA Certification Specification 25, respectively the FAA Code of Federal Regulations Title 14 Part 25 were used for the certification processes in IWTs. In addition, Appendix O was introduced in 2014 to cover the supercooled large droplet (SLD) icing conditions of freezing drizzle and freezing rain, which pose a potential risk for flight safety. The simulation of SLD icing in IWTs is, due to the different behavior of the large droplets, very challenging and not all required conditions have successfully been recreated yet. RTA Rail Tec Arsenal Fahrzeugversuchsanlage GmbH has focused on the simulation of in-flight icing conditions since 2012 and increased effort was put in the simulation of SLDs in recent years.
Journal Article

Aerodynamic Assessment of Complex 3D Ice Shape Replications

2019-06-10
2019-01-1936
This work introduces an approach allowing the detailed replication of ice shapes generated in icing wind tunnels, with a special focus on complex and strongly varying ice structures, e.g., ice feathers or residual ice stemming from incomplete removal of accreted ice by ice protection systems. 3D-scans are used as an input for the manufacturing process of the ice shape replica. The manufacturing approach itself is based on additive techniques using semi-flexible materials. In contrast to existing replication techniques, this approach allows also clean areas between ice-covered surface locations. In the present paper, a quality assessment based on the comparison of the lift coefficients of real and corresponding artificial ice shapes is presented.
Technical Paper

Numerical Simulation of In-flight Icing by Water Droplets with Elevated Temperature

2023-06-15
2023-01-1477
When conducting experiments in icing wind tunnels (IWTs), a significant question is to what extent the temperature of the water droplets generated by the spray system has converged to the static air temperature when the droplets impinge on the test object. This is a particularly important issue for large droplets, since the cooling rate of droplets decreases sharply with increasing diameter. In this paper, on the one hand, realistic droplet temperature distributions in the measurement section of the Rail Tec Arsenal IWT (located in Vienna) are computed by means of a numerical code which tracks the paths of the droplets from the spraying nozzle to the measurement section and simultaneously calculates their cooling rates. On the other hand, numerical icing simulations are performed to investigate to what extent the deviation of the droplet temperature from static air temperature influences icing and thermal anti-icing processes.
X