Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Impact of Low Viscosity Engine Oil on Performance, Fuel Economy and Emissions of Light Duty Diesel Engine

2016-10-17
2016-01-2316
The Global Fuel Economy Initiative in 21st session of COP21 to the UNFCCC aims to develop 50 percent more efficient automobiles by the year 2050.This initiative has enhanced interest in fuel economy improvements and emission reduction using novel engine-related technologies and fuel efficient engine oil. Low viscosity grade engine oils have demonstrated the potential to improve the fuel economy by reducing the friction and lowering the greenhouse gases. In this context of developing fuel efficient engine oils, this study focuses on establishing the validity of an in-house short duration test protocol to differentiate engine oils from a fuel economy aspect and also attempts to relate reduced exhaust emissions. In the present study, low viscosity grade oils - SAE 0W-20, SAE 5W-30 and SAE 20W-40 as the baseline oil, were selected for assessing engine oil effects on fuel economy of diesel engines.
Technical Paper

Evaluating the Soot Handling Performance of Diesel Engine Oils through Optimized Engine Testing Protocol

2017-03-28
2017-01-0885
Majority of light and heavy duty commercial vehicles on road in India use API-CF grade lubricants. Soot accumulation in lubricating oil can result in engine wear and lubricant’s viscosity increase thereby affecting its pumping ability and drain interval. Due to faster lubricant degradation and with emergence of newer engine technologies, there is increasing demand of improving performance of lubricants particularly with respect to soot dispersancy. This paper describes the various engine hardware modifications and optimizations carried out on a commercial BS II, 4-cylinder turbocharged diesel engine in order to develop a flexible engine test procedure for evaluating the lubricant’s dispersancy/anti wear characteristics up to 6% soot levels.
Technical Paper

Characterization of Ultrafine Particle Emissions from a Heavy Duty CNG Engine through Endurance Tests

2017-03-28
2017-01-0778
In the light of major research work carried out on the detrimental health impacts of ultrafine particles (<50 nm), Euro VI emission standards incorporate a limit on particle number, of which ultrafine particles is the dominant contributor. As Compressed Natural Gas (CNG) is a cheaper and cleaner fuel when compared to diesel, there has been a steady increase in the number of CNG vehicles on road especially in the heavy duty segment. Off late, there has been much focus on the nature of particle emissions emanating from CNG engines as these particles mainly fall under the ultrafine particle size range. The combustion of lubricant is considered to be the dominant source of particle emissions from CNG engines. Particle emission due to lubricant is affected by the oil transport mechanisms into the combustion chamber which in turn vary with engine operating conditions as well as with the physico chemical properties of the lubricant.
X