Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Study of Fuel Stratification on Spark Assisted Compression Ignition (SACI) Combustion with Ethanol Using High Speed Fuel PLIF

2008-10-06
2008-01-2401
An engine can be run in Homogenous Charge Compression Ignition (HCCI) mode by applying a negative valve overlap, thus trapping hot residuals so as to achieve an auto-ignition temperature. By employing spark assistance, the engine can be operated in what is here called Spark Assisted Compression Ignition (SACI) with ethanol as fuel. The influence of fuel stratification by means of port fuel injection as well as in combination with direct injection was investigated. A high-speed multi-YAG laser system and a framing camera were utilized to capture planar laser-induced fluorescence (PLIF) images of the fuel distribution. The charge homogeneity in terms of fuel distribution was evaluated using a homogeneity index calculated from the PLIF images. The homogeneity index showed a higher stratification for increased proportions of direct-injected fuel. It was found that charge stratification could be achieved through port fuel injection in a swirling combustion system.
Technical Paper

Quantification of the Formaldehyde Emissions from Different HCCI Engines Running on a Range of Fuels

2005-10-24
2005-01-3724
In this paper, the formaldehyde emissions from three different types of homogenous charge compression ignition (HCCI) engines are quantified for a range of fuels by means of Fourier Transform Infra Red (FTIR) spectroscopic analysis. The engines types are differentiated in the way the charge is prepared. The characterized engines are; the conventional port fuel injected one, a type that traps residuals by means of a Negative Valve Overlap (NVO) and finally a Direct Injected (DI) one. Fuels ranging from pure n-heptane to iso-octane via diesel, gasoline, PRF80, methanol and ethanol were characterized. Generally, the amount of formaldehyde found in the exhaust was decreasing with decreasing air/fuel ratio, advanced timing and increasing cycle temperature. It was found that increasing the source of formaldehyde i.e. the ratio of heat released in the cool-flame, brought on higher exhaust contents of formaldehyde.
X