Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Durability Study of a High-Pressure Common-Rail Fuel Injection System Using Lubricity Additive-Dosed Gasoline-Like Fuel

2018-04-03
2018-01-0270
Experimental data and modeling work have shown that gasoline-like fuels can potentially be used to simultaneously achieve high efficiency and low pollutant emissions in compression ignition engines. Demonstrating that existing hardware systems are tolerant to these fuels is a key step in harnessing this potential. In this study, a 400-hour North Atlantic Treaty Organization (NATO) test cycle was used to assess the overall robustness of a Cummins XPI common-rail injection system operating with gasoline-like fuel. The cycle was designed to accelerate wear and identify any significant failure modes that could appear under normal operating conditions. Although prior work has investigated injection system durability with a wide variety of alternative fuels, this study uniquely focuses on a high-volatility, low-viscosity, gasoline-like fuel that has been dosed with lubricity additive.
Technical Paper

Accurately Simulating the Performance of Gasoline-Like Fuels in 1-D Hydraulic Injection System Models Operating at High Pressures

2021-04-06
2021-01-0389
Recent research has shown that gasoline compression ignition (GCI) improves the soot-NOx tradeoff of traditional diesel engines due to the beneficial properties of light distillate fuels. However, system level optimization of a new engine concept is ultimately needed to maximize fuel economy and emissions improvements. Along with air and aftertreatment systems, the fuel system also requires further development to enable GCI. One important design tool for fuel system hardware is 1-D hydraulic modeling. Although accurate tabulations of diesel or equivalent calibration fluid properties are available in 1-D modelling software packages, the same situation does not exist for gasoline-like fuels, especially at conditions encountered in the high-pressure injection equipment needed to support GCI. This study presents a methodology for generating accurate liquid property databases of complex, multi-component light distillate fuels that can be used in high-pressure 1-D hydraulic models.
X