Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Durability Study of a Light-Duty High Pressure Common Rail Fuel Injection System Using E10 Gasoline

2020-04-14
2020-01-0616
A 500-hour test cycle has been used to evaluate the durability of a prototype high pressure common rail injection system operating up to 1800 bar with E10 gasoline. Some aspects of the original diesel based hardware design were optimized in order to accommodate an opposed-piston, two-stroke engine application and also to mitigate the impacts of exposure to gasoline. Overall system performance was maintained throughout testing as fueling rate and rail pressure targets were continuously achieved and no physical damage was observed in the low-pressure components. Injectors showed no deviation in their flow characteristics after exposure to gasoline and high resolution imaging of the nozzle spray holes and pilot valve assemblies did not indicate the presence of cavitation damage. The high pressure pump did not exhibit any performance degradation during gasoline testing and teardown analysis after 500 hours showed no evidence of cavitation erosion.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Journal Article

Durability Study of a High-Pressure Common-Rail Fuel Injection System Using Lubricity Additive-Dosed Gasoline-Like Fuel

2018-04-03
2018-01-0270
Experimental data and modeling work have shown that gasoline-like fuels can potentially be used to simultaneously achieve high efficiency and low pollutant emissions in compression ignition engines. Demonstrating that existing hardware systems are tolerant to these fuels is a key step in harnessing this potential. In this study, a 400-hour North Atlantic Treaty Organization (NATO) test cycle was used to assess the overall robustness of a Cummins XPI common-rail injection system operating with gasoline-like fuel. The cycle was designed to accelerate wear and identify any significant failure modes that could appear under normal operating conditions. Although prior work has investigated injection system durability with a wide variety of alternative fuels, this study uniquely focuses on a high-volatility, low-viscosity, gasoline-like fuel that has been dosed with lubricity additive.
Journal Article

Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry

2018-04-03
2018-01-0303
Cyclic variability in internal combustion engines (ICEs) arises from multiple concurrent sources, many of which remain to be fully understood and controlled. This variability can, in turn, affect the behavior of the engine resulting in undesirable deviations from the expected operating conditions and performance. Shot-to-shot variation during the fuel injection process is strongly suspected of being a source of cyclic variability. This study focuses on the shot-to-shot variability of injector needle motion and its influence on the internal nozzle flow behavior using diesel fuel. High-speed x-ray imaging techniques have been used to extract high-resolution injector geometry images of the sac, orifices, and needle tip that allowed the true dynamics of the needle motion to emerge. These measurements showed high repeatability in the needle lift profile across multiple injection events, while the needle radial displacement was characterized by a much higher degree of randomness.
Technical Paper

Lubricity of Light-End Fuels with Commercial Diesel Lubricity Additives

2017-03-28
2017-01-0871
Lubricity is an empirically-determined tribological property, which is a function of the fluid properties and system, and which is known to influence fuel system wear durability. In this work, the lubricity of various fuels was tested using a modified version of ASTM D6079, which uses a high frequency reciprocating rig (HFRR). The fuels were tested as received and with various amounts of commercial diesel lubricity additives. Lubricity of all light-end fuels test as received (without lubricity additives) was found to be substantially worse than additized diesel certification fuel, and lowest for unadditized straight-run gasoline. All diesel lubricity additives tested were able to substantially improve the lubricity of the light-end fuel formulations. The best additives reduced the wear scar diameter in the HFRR test to around 200 μm at a concentration of 200 mg/kg, putting them well within the maximum allowable limit for market No. 2 diesel fuel.
Technical Paper

Development of a Transient Spray Cone Angle Correlation for CFD Simulations at Diesel Engine Conditions

2018-04-03
2018-01-0304
The accurate modeling of fuel spray behavior under diesel engine conditions requires well-characterized boundary conditions. Among those conditions, the spray cone angle is important due to its impact on the spray mixing process, flame lift-off locations and subsequent soot formation. The spray cone angle is a highly dynamic variable, but existing correlations have been developed mainly for diesel fuels at quasi-steady state and relatively low injection pressures. The objective of this study was to develop spray cone angle correlations for both diesel and a light-end gasoline fuel over a wide range of diesel-engine operating conditions that are capable of capturing both the transient and quasi-steady state processes. Two important macroscopic characteristics of solid cone sprays, the spray cone angle and spray penetration, were measured using a single-hole heavy-duty injector using two fuels at diesel engine conditions in an optical constant volume vessel.
Technical Paper

Accurately Simulating the Performance of Gasoline-Like Fuels in 1-D Hydraulic Injection System Models Operating at High Pressures

2021-04-06
2021-01-0389
Recent research has shown that gasoline compression ignition (GCI) improves the soot-NOx tradeoff of traditional diesel engines due to the beneficial properties of light distillate fuels. However, system level optimization of a new engine concept is ultimately needed to maximize fuel economy and emissions improvements. Along with air and aftertreatment systems, the fuel system also requires further development to enable GCI. One important design tool for fuel system hardware is 1-D hydraulic modeling. Although accurate tabulations of diesel or equivalent calibration fluid properties are available in 1-D modelling software packages, the same situation does not exist for gasoline-like fuels, especially at conditions encountered in the high-pressure injection equipment needed to support GCI. This study presents a methodology for generating accurate liquid property databases of complex, multi-component light distillate fuels that can be used in high-pressure 1-D hydraulic models.
Journal Article

Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis

2019-04-02
2019-01-0263
This study is a continuation of previous work assessing the robustness of a Cummins XPI common rail injection system operating with gasoline-like fuel. All the hardware from the original study was retained except for the high pressure pump head and check valves which were replaced due to cavitation damage. An additional 400 hour NATO cycle was run on the refurbished fuel system to achieve a total exposure time of 800 hours and detect any other significant failure modes. As in the initial investigation, fuel system parameters including pressures, temperatures and flow rates were logged on a test bench to monitor performance over time. Fuel and lubricant samples were taken every 50 hours to assess fuel consistency, metallic wear, and interaction between fuel and oil. High fidelity driving torque and flow measurements were made to compare overall system performance when operating with both diesel and light distillate fuel.
X