Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Technical Paper

Exhaust Rebreathing Strategy to Improve Low Load Operation Applied on a Heavy-Duty Gasoline Compression Ignition Engine

2023-10-31
2023-01-1621
This study investigates the effect of exhaust rebreathe (RB) on the low-load regime of a Gasoline Compression Ignition (GCI) heavy-duty engine. For this engine, a custom-designed cam profile with a second exhaust event occurring during the intake stroke was tested under different experimental load and speed conditions. First, the study focuses on the of rebreathe on combustion and gas exchange processes in the low load range of 240-300 kPa BMEP at three key speeds: 820, 1200, and 1600 rpm. Then, a general analysis of the thermal management of this technology is assessed in the low-load map, evaluating the impact on turbine outlet temperature and after-treatment performance related to the conversion rates for NOx and total hydrocarbons (THC). The detailed analysis revealed an increase of around 9% in the trapped residuals for the RB operation, translating to an in-cylinder temperature increase and raising the exhaust temperature up to 50°C.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean Compression-Ignition Engines, Part II: Air-Handling and Exhaust Aftertreatment

2024-01-16
2024-26-0044
Currently, on-road transport contributes nearly 12% of India’s total energy related carbon dioxide (CO2) emissions that are expected to be doubled by 2040. Following the global trends of increasingly stringent greenhouse gas emissions (GHG) and criteria emissions, India will likely impose equivalent Bharat Stage (BS) regulations mandating simultaneous reduction in CO2 emissions and nearly 90% lower nitrogen oxides (NOx) from the current BS-VI levels. Consequently, Indian automakers would likely face tremendous challenges in meeting such emission reduction requirements while balancing performance and the total cost of ownership (TCO) trade-offs. Therefore, it is conceivable that cost-effective system improvements for the existing internal combustion engine (ICE) powertrains would be of high strategic importance for the automakers.
X