Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Relative Performance Analyses of Independent Front Axle Suspensions for a Heavy-Duty Mining Truck

2014-09-30
2014-01-2320
A range of axle suspensions, comprising hydro-pneumatic struts and diverse linkage configurations, have evolved in recent years for large size mining trucks to achieve improved ride and higher operating speeds. This paper presents a comprehensive analysis of different independent front suspension linkages that have been implemented in various off-road vehicles, including a composite linkage (CL), a candle (CA), a trailing arm (TA), and a double Wishbone (DW) suspension applied to a 190 tons mining truck. Four different suspension linkages are modeled in MapleSim platform to evaluate their kinematic properties. The relative kinematic properties of the suspensions are evaluated in terms of variations in the kingpin inclination, caster, camber, toe-in and horizontal wheel center displacements considering the motion of a hydro-pneumatic strut. The results revealed the CL and DW suspensions yield superior kinematic response characteristics compared to the CA and TA suspensions.
Journal Article

In-Situ Steering Dynamics Analysis of Skid Steering for Articulated Motor-Driven Vehicle

2016-04-05
2016-01-1646
The traditional hydraulic steering mode in articulated motor-driven vehicle makes the vehicle structure complex. Further more, the forces between the front and rear part of the articulated vehicle could damage the articulated joint body in the process of vehicle steering. However, skid steering mode could make the vehicle steer with the different speed of each wheel, which is flexible without hydraulic steering system. The purpose of this paper is to introduce the principle of skid steering mode in articulated motor-driven vehicle. In this paper, the theory of traditional wheeled vehicle’s skid-steering mode and hydraulic steering mode of articulated vehicle are used to establish the in-situ skid-steering kinematic and dynamic model. Based on the model, the vehicle trajectory and the dynamic relationships among the body structure of the vehicle, longitudinal forces, lateral forces of each wheel are described.
X