Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Study of Hydraulic Steering Process for Intelligent Autonomous Articulated Vehicle

2018-04-03
2018-01-0133
Intelligent autonomous articulated vehicles (IAAVs), the most important transportations of intelligent mining system, are the future direction of mining industry. Though it could realize the unmanned drive, without supports of hydraulic steering process analyses and vehicle dynamic researches, there are no references for the IAAVs to adjust the steering angle in certain driving error. It still has to check the signal from the angle sensor repeatedly to track the planned path in the working process, which lead to the low control accuracy. In this paper, the theories of hydraulic steering process and vehicle model will be developed for the vehicle intelligent control with the analyses of road and tire characteristics based on the principle of least resistance.
Technical Paper

Simulation Analysis of a Dual-Purpose Intelligent Mobile Platform for Highway and Railway

2019-06-05
2019-01-1499
Railways play a huge role in China's transportation industry. In order to ensure intelligence, advanced technology and high efficiency in functions such as railway inspection, rescue and transportation, a dual-purpose intelligent mobile platform for both roads and railways was developed. Due to the height limitation of this platform, resilient wheels and rubber dampers with short stroke are used as the suspension system for the rail chassis. Based on this special suspension form, the dynamic model of the whole platform is derived, and the simulation model of the whole platform is established in the simulation software. The effects of resilient wheels’ axial stiffness, radial stiffness and vertical stiffness, lateral stiffness of rubber dampers on the vertical and lateral stability of the platform were studied. It is found that the increase of the radial stiffness of the resilient wheels will deteriorate the vertical stability and lateral stability of the platform.
X