Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Study on Combustion and Emissions of Duel Fuel Sequential Combustion with n-Heptane/Gasoline-Like Fuels

2014-10-13
2014-01-2682
An experimental study was conducted on the combustion and emissions characteristics of duel fuel sequential combustion (DFSC) mode on a single-cylinder engine, applying port injection of n-heptane combined with in-cylinder direct injection of commercial gasoline, ethanol and n-butyl alcohol, respectively. Three-stage combustion, which consists of low- and high-temperature combustion of premixed n-heptane and high temperature combustion of directly injected gasoline-like fuels were observed. The effects of the premixed ratio and overall heating values per cycle on the combustion characteristics and emissions were investigated. The experimental results show that: with the increasing of premixed ratio and overall heating values per-cycle, the ignition timing of the directly injected fuels advances and the maximum pressure and maximum mass-averaged temperature increase.
Journal Article

Exploring the Effects of the Key Multi-Injection Parameters on Combustion and Emissions in Intelligent Charge Compression Ignition (ICCI) Mode

2020-09-15
2020-01-2035
Developing advanced combustion mode has been the active area for high efficiency and ultra-low emissions of the next-generation internal combustion engines. In this paper, a series of experiments were conducted in a modified single-cylinder compression ignition engine for operating a brand-new combustion mode denoted as intelligent charge compression ignition (ICCI) mode. By using two common-rail systems, commercial gasoline and diesel were alternately directly injected into the cylinder through multi-injection strategies in the injection timing range of 50~320 °CA BTDC. Thus, the in-cylinder stratified condition can be flexibly and accurately adjusted in this unique combustion mode. The key injection parameters, such as gasoline injection timing and diesel split ratio, were investigated to explore their effects on engine combustion, emissions, and fuel consumption.
X