Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Adhesive Failure Prediction in Crash Simulations

2019-01-09
2019-26-0297
Structural adhesive is a good alternative to provide required strength at joinery of similar and dissimilar materials. Adhesive joinery plays a critical role to maintain structural integrity during vehicle crash scenario. Robust adhesive failure definitions are critical for accurate predictions of structural performance in crash Computer Aided Engineering (CAE) simulations. In this paper, structural adhesive material characterization challenges like comprehensive In-house testing and CAE correlation aspects are discussed. Considering the crash loading complexity, test plan is devised for identification of strength and failure characteristics at 0°, 45°, 75°, 90°, and Peel loading conditions. Coupon level test samples were prepared with high temperature curing of structural adhesive along with metal panels. Test fixtures were prepared to carryout testing using Instron VHS machine under quasi-static and dynamic loading.
Journal Article

Engineering Challenges in Alloy Wheel Rim for Safety Simulations

2021-09-22
2021-26-0362
Aluminum alloy wheels are being widely used in the automotive industry since the last decade due to its superior styling and performance. Alloy wheel rim is one of the critical components and plays an important role in a frontal crash scenario. The wheel rim failure prediction in safety simulation is essential to ensure robust safety performance. Determining failure characteristics of an alloy wheel poses many difficulties considering its brittle nature, porosity and inhomogeneity in material properties across different regions of wheel rim due to mold design, cooling rate and other process parameters of the low-pressure die casting process. This paper describes the modelling and simulation methodology developed to predict accurate wheel behavior. The methodology addresses two distinct areas of challenges such as alloy wheel rim failure prediction and associated tire blow out.
X