Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Simulation to Assess Implementation of Variable Valve Timing and Lift Technique on a BSVI LMD Diesel Engine for FE Improvement

2021-09-22
2021-26-0421
In order to stand apart from the competition, there is an ever growing demand in Indian commercial vehicle segments to reach higher fuel economy while achieving the emission goals set by the BS-VI norms. With emissions standard set by BS-VI, novel techniques to improve fuel efficiency have to be considered that have least impact with respect to NOx and soot emissions. The optimization of exhaust and intake valve lifts with respect to engine speed, technology commonly known as Variable Valve Lift and Timing (VVT/VVL), has been implemented in many passenger vehicles propelled by gasoline engine. The aim of this work is do initial assessment of utilizing the VVL method on a LMD commercial vehicle diesel engine. A 3.8 litre BS-VI turbocharged EGR engine is used for this study. Valve lift and timing optimization for better fuel efficiency at rated power engine speed is carried out by using one-dimensional thermodynamic simulation software AVL BOOST.
Technical Paper

Concept Based Evaluation and Development of Close-Coupled DOC through Model in Loop Simulation Supported by Experimental Investigations on 3L Light & Medium Duty BS - VI Diesel Engine

2022-03-29
2022-01-0561
The implementation of stringent BSVI norms from April 2020 has greatly revolutionized the automobile industry. With the plan for implementation of more stringent BSVI OBD-II norms from April 2023, in place, meeting legislative limits, particularly with CI engines, will be a challenge. The major challenge is the reduction in nitrogen oxides (NOx) which necessitates a selective catalytic reduction (SCR), together with effective calibration, to maintain the conversion efficiencies at the highest possible levels. The conversion efficiency is majorly dictated by temperature and exhaust mass flow. Hence, optimization of thermal management modes are very important. This is achieved by a close-coupled diesel oxidation catalyst (DOC).
X