Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Design & Development of Single Rod Gear Shift Lever (SRGSL) for HD Commercial Vehicles with Experimental Correlation

2016-09-27
2016-01-8067
Three on the tree, four on the floor. The gear change mechanism is a component that is too often taken for granted but it is one of the more important features of the vehicle. It must be quick and smooth in action, efficient and totally reliable. Modern driving conditions demand that the driver makes frequent gear changes and a mechanism that is temperamental or inaccurate can be both frustrating and dangerous as well as physically tiring. The gear changing mechanism starts, quite obviously, with the gear lever. Most stem from the fact that a gear lever must move in two planes, forward and back and then from side to side to move across the gear "gate". A good many drivers think of gear changing as one simple action. This is more a tribute to the design of gear changing mechanisms than a reality. There are multiple gear selector mechanisms that are available for use in commercial vehicle industry.
Technical Paper

Simulation and Validation of Propeller Shaft Mounting Brackets for Heavy Duty Commercial Vehicles

2017-07-10
2017-28-1947
A propeller shaft is a mechanical component of drive train that connects transmission to drive wheels/axle with the goal to transfer rotation and torque. It is used when the direct connection between transmission and drive axle is not possible due to large distance between their respective assigned design spaces. In commercial vehicles especially in heavy duty (GVW/GCW>15 tons) a single piece propeller shaft is seldom used due to its inherent disadvantages and therefore, most if not all, of the setups consists of multiple pieces of propeller shaft which are directly mounted on to frame cross members with the help of mounting brackets. As such the mounting bracket assembly undergoes various dynamic and static loading conditions and should be able to withstand these loads. This paper will focus on the FEA analysis of propeller shaft mounting assembly system. Furthermore, these results will be correlated with physical tests results collected from test rig and physical vehicle testing.
Technical Paper

New Virtual Methodology for Analysis of Vehicle Cabin Using 1-D Elements

2016-02-01
2016-28-0240
The cabin or cab is an enclosed space where the driver and co-driver are seated. Structural parameters such as modal and stiffness characteristics are of key importance for its durability study and driver’s comfort. The desired strength and stiffness value of the cabin have to be met at the development phase itself. In developing new cabin models numerical simulations are used for estimating vehicle performance to reduce the development cycle. But, the conventional method of modeling the cabin using 2-d elements and performing subsequent iteration steps to arrive at the desired stiffness and strength value will be cumbersome and time consuming. Thus, a methodology of FE modeling of the truck cabin using 1-D elements has been proposed in this paper which will reduce the analysis time of successive iterations. For this purpose an existing proven driver’s cabin is modeled using 1-D elements.
Technical Paper

Structural Non-linear Topology Optimization of Transmission Housing and Its Experimental Verification

2015-03-30
2015-01-0098
Advanced Non-linear topology optimization methods have been addressed as the most promising techniques for light weight and performance design of Powertrain structures. The theoretical achievements are obtained both mechanically and mathematically. Nowadays, the great challenge lies in solving more complicated engineering design problems with multidisciplinary objectives or complex structural systems. The purpose of this paper is to provide a forum to present new developments in structural Non-linear topology optimization. The advantage of the proposed method is that structural optimization on irregular design domains can be carried out easily. Furthermore, this method integrates the stress analysis and the boundary evolution within the framework of finite element methods. In this paper, mainly focused on the Commercial Vehicles Powertrain component i.e. Transmission Housing.
X