Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Investigation and Optimization of Variables in Hot Forming through FEA Simulations

2017-03-28
2017-01-0313
Automotive manufacturers around the world are pushing towards the goal of better safety from their vehicles without compromising on the fuel economy. One of the very successful efforts in this direction is the hot forming technique that has been around for 30 years since Saab used it for the first time in 1986. Finite element simulations for this technique are of paramount importance to identify and optimize the process; as the steels used in hot stamping are sensitive to certain variables when heated that would otherwise cause very few disturbances in a normal cold forming process. The major contributor to the high strength of the stamped part is the phase transformation that it undergoes during the hot forming process. This paper investigates and identifies critical parameters through Finite Element Analysis (FEA) simulations.
Technical Paper

Correlation Study on Parameters Affecting Springback Phenomenon in Stamping Simulation

2013-04-08
2013-01-1169
Springback is a major phenomenon in sheet metal forming process that has to be tackled to achieve the desired product with greater dimensional accuracy. Springback occurs due to elastic recovery of sheet metal after the stamping process. The automobile industry is gradually moving from use of conventional steels to advanced high strength steels (AHSS) for their light weight and greater strength properties; however AHSS possesses greater springback effect due to higher elastic limit which proves to be difficult to deal with the springback effect. Hence it is imperative that the counter measures are taken to minimize the springback effect. The purpose of the study is to showcase various factors that influence the prediction of springback phenomenon. In this study the simulation results are compared with scanned data of actual stamped panels and their deviation is studied.
Technical Paper

Die Wear Estimation in Automotive Sheet Metal Stamping

2013-04-08
2013-01-1171
Automotive industry's migration to usage of HSS (High Strength Steels), AHSS (Advance High Strength Steels) from conventional steels for their low weight and high strength properties has had its significant effects on die wear. The unpredictability of die wear can pose manufacturing issues, for example, undesirable tool life. Hence die wear has been gaining immense attention and lot of research work has been carried out to provide a die wear prediction method. This paper focuses on the method of estimating wear mathematically based on the mechanics behind die wear phenomenon. This is also an effort to study wear on die for an automotive component in critical areas for which the amount of wear are calculated. This study is further to be correlated with production data from die maintenance record, explicit measurement of die wear, etc., to validate the estimation.
Technical Paper

Exhaust Heat Powered Adsorption Air Conditioner for Automotive Applications

2015-04-14
2015-01-0358
An adsorption air conditioning system is proposed to provide cabin comfort cooling for automotives. This report focuses on the development of a compact adsorption cooling system for automobile applications and its experimental performance. This system uses AQSOA - Z01, an adsorbent material that adsorbs and regenerates water efficiently at low temperature ranges. A water circulation system was built to simulate the process of obtaining heat from exhaust gas heat and providing low-grade thermal energy for the adsorption cooling system. As this system does not need to be powered by the engine as it is in the conventional system, fuel efficiency of the engine can be improved by 10%. This also results in reduction of pollutants due to combustion. The prototype is produced a maximum1310 Watts of cooling power. The system also achieved 650 W/kg SPC (Specific Cooling Power) and a COP (Coefficient of Performance) value of 0.45.
X