Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Triple-Control-Mode for Semi-Active Suspension System

2015-04-14
2015-01-0621
There is an increasing customer demand for adjustable chassis control features which enable adaption of the vehicle comfort and driving characteristics to the customer requirements. One of the most promising vehicle control systems which can be used to change the vehicle characteristics during the drive is the semi-active suspension system. This paper presents a Rule-Optimized Fuzzy Logic controller for semi-active suspension systems which can continuously adjust itself not only according to the road conditions but also to the driver requirements. The proposed controller offers three different control modes (Comfort, Normal and Sport) which can be switched by the driver during driving. The Comfort Mode minimizes the accelerations imposed on the driver and passengers by using a softer damping. On the other hand, the increased damping in Sport Mode provides better road holding capability, which is critical for sporty handling.
Technical Paper

Methodology to Estimate Load Spectra of Autonomous and Highly Automated Vehicles

2024-04-09
2024-01-2326
The knowledge of representative load collectives and duty cycles is crucial for designing and dimensioning vehicles and their components. For human driven vehicles, various methods are known for deriving these load spectra directly or indirectly from fleet measurement data of the customer vehicle operation. Due to the lack of market penetration of highly automated and autonomous vehicles, there is no sufficient fleet data available to utilize these methods. As a result of increased demand for ride comfort compared to human driven vehicles, autonomous vehicle operation promises reduced driving speeds as well as reduced lateral and longitudinal accelerations. This can consequently lead to decreasing operation loads, thus enabling potentially more light-weight, cost-effective, resource-saving and energy-efficient vehicle components.
Technical Paper

Analysis of human driving behavior with focus on vehicle lateral control

2024-07-02
2024-01-2997
The optimization and further development of automated driving functions offers great potential to relieve the driver in various driving situations and increase road safety. Simulative testing in particular is an indispensable tool in this process, allowing conclusions to be drawn about the design of automated driving functions at a very early stage of development. In this context, the use of driving simulators provides support so that the driving functions of tomorrow can be experienced in a very safe and reproducible environment. The focus of the acceptance and optimization of automated driving functions is particularly on vehicle lateral control functions. As part of this paper, a test person study was carried out regarding manual vehicle lateral control on the dynamic vehicle road simulator at the Institute of Automotive Engineering.
Technical Paper

Set-up of an in-car system for investigating driving style on the basis of the 3D-method

2024-07-02
2024-01-3001
Investigating human driver behavior enhances the acceptance of the autonomous driving and increases road safety in heterogeneous environments with human-operated and autonomous vehicles. The previously established driver fingerprint model, focuses on the classification of driving style based on CAN bus signals. However, driving styles are inherently complex and influenced by multiple factors, including changing driving environments and driver states. To comprehensively create a driver profile, an in-car measurement system based on the Driver-Driven vehicle-Driving environment (3D) framework is developed. The measurement system records emotional and physiological signals from the driver, including ECG signal and heart rate. A Raspberry Pi camera is utilized on the dashboard to capture the driver's facial expressions and a trained convolutional neural network (CNN) recognizes emotion. To conduct unobtrusive ECG measurements, an ECG sensor is integrated into the steering wheel.
X