Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

On the Thermal Integration of Metal Hydrides with Phase Change Materials: Numerical Simulation Developments towards Advanced Designs

2022-09-16
2022-24-0018
Hydrogen plays a crucial role towards the decarbonization of the transport sector, whilst most of the challenges for a widespread diffusion of hydrogen-based technologies are related to storage technologies. The use of Metal Hydrides (MH) has been widely recognized as a potential solution thanks to their advantages in terms of high degree of safety, high volumetric storage density, comparatively low operating pressure, the possibility of operation at room temperature and relatively low cost. Since the hydrogenation and dehydrogenation of MH are respectively highly exothermic and endothermic reactions, thermal management of the storage tank is one of the most critical issues to ensure safe and effective operations.
Technical Paper

ECN Spray G Injector: Assessment of Numerical Modeling Accuracy

2018-04-03
2018-01-0306
Gasoline Direct Injection (GDI) is a leading technology for Spark Ignition (SI) engines: control of the injection process is a key to design the engine properly. The aim of this paper is a numerical investigation of the gasoline injection and the resulting development of plumes from an 8-hole Spray G injector into a quiescent chamber. A LES approach has been used to represent with high accuracy the mixing process between the injected fuel and the surrounding mixture. A Lagrangian approach is employed to model the liquid spray. The fuel, considered as a surrogate of gasoline, is the iso-octane which is injected into the high-pressure vessel filled with nitrogen. The numerical results have been compared against experimental data realized in the optical chamber. To reveal the geometry of plumes two different imaging techniques have been used in a quasi-simultaneous mode: Mie-scattering for the liquid phase and schlieren for the gaseous one.
X