Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

CFD and X-Ray Analysis of Gaseous Direct Injection from an Outward Opening Injector

2016-04-05
2016-01-0850
Using natural gas in an internal combustion engine (ICE) is emerging as a promising way to improve thermal efficiency and reduce exhaust emissions. In the development of such engine platforms, computational fluid dynamics (CFD) plays a fundamental role in the optimization of geometries and operating parameters. One of the most relevant issues in the simulation of direct injection (DI) gaseous processes is the accurate prediction of the gas jet evolution. The simulation of the injection process for a gaseous fuel does not require complex modeling, nevertheless properly describing high-pressure gas jets remains a challenging task. At the exit of the nozzle, the injected gas is under-expanded, the flow becomes supersonic and shocks occur due to compressibility effects. These phenomena lead to challenging computational requirements resulting from high grid resolution and low computational time-steps.
Technical Paper

Natural Gas Fueled Engines Modeling under Partial Stratified Charge Operating Conditions

2017-09-04
2017-24-0093
Using natural gas in internal combustion engines (ICEs) is emerging as a promising strategy to improve thermal efficiency and reduce exhaust emissions. One of the main benefits related to the use of this fuel is that the engine can be run with lean mixtures without compromising its performances. However, as the mixture is leaned out beyond the Lean Misfire Limit (LML), several technical problems are more likely to occur. The flame propagation speed gradually decreases, leading to a slower heat release and a low combustion quality, thus increasing the occurrence of misfiring and incomplete combustions. This in turn results in a sharp increment in CO and UHC emissions, as well as in cycle-to-cycle variability. In order to limit the above-mentioned problems, different solutions have been proposed over the last decade.
Technical Paper

On the Thermal Integration of Metal Hydrides with Phase Change Materials: Numerical Simulation Developments towards Advanced Designs

2022-09-16
2022-24-0018
Hydrogen plays a crucial role towards the decarbonization of the transport sector, whilst most of the challenges for a widespread diffusion of hydrogen-based technologies are related to storage technologies. The use of Metal Hydrides (MH) has been widely recognized as a potential solution thanks to their advantages in terms of high degree of safety, high volumetric storage density, comparatively low operating pressure, the possibility of operation at room temperature and relatively low cost. Since the hydrogenation and dehydrogenation of MH are respectively highly exothermic and endothermic reactions, thermal management of the storage tank is one of the most critical issues to ensure safe and effective operations.
X