Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

CFD and X-Ray Analysis of Gaseous Direct Injection from an Outward Opening Injector

2016-04-05
2016-01-0850
Using natural gas in an internal combustion engine (ICE) is emerging as a promising way to improve thermal efficiency and reduce exhaust emissions. In the development of such engine platforms, computational fluid dynamics (CFD) plays a fundamental role in the optimization of geometries and operating parameters. One of the most relevant issues in the simulation of direct injection (DI) gaseous processes is the accurate prediction of the gas jet evolution. The simulation of the injection process for a gaseous fuel does not require complex modeling, nevertheless properly describing high-pressure gas jets remains a challenging task. At the exit of the nozzle, the injected gas is under-expanded, the flow becomes supersonic and shocks occur due to compressibility effects. These phenomena lead to challenging computational requirements resulting from high grid resolution and low computational time-steps.
Technical Paper

Natural Gas Fueled Engines Modeling under Partial Stratified Charge Operating Conditions

2017-09-04
2017-24-0093
Using natural gas in internal combustion engines (ICEs) is emerging as a promising strategy to improve thermal efficiency and reduce exhaust emissions. One of the main benefits related to the use of this fuel is that the engine can be run with lean mixtures without compromising its performances. However, as the mixture is leaned out beyond the Lean Misfire Limit (LML), several technical problems are more likely to occur. The flame propagation speed gradually decreases, leading to a slower heat release and a low combustion quality, thus increasing the occurrence of misfiring and incomplete combustions. This in turn results in a sharp increment in CO and UHC emissions, as well as in cycle-to-cycle variability. In order to limit the above-mentioned problems, different solutions have been proposed over the last decade.
Technical Paper

Assessment of Hybrid Commercial Fleet Performance: Effects of Advanced Control Strategies for Different Geographical Sites

2022-09-16
2022-24-0023
The international community is making significant efforts to face climate changes related to substantial greenhouse gas (GHG) emissions. Among all the sectors, transport is responsible for almost a quarter of global GHG emissions, 72% of which is imputable to road vehicles. It’s also expected that, without significant measures, these emissions may grow at a faster rate than other sectors. Furthermore, rising fuel costs and availability concerns have made the electrification of road transportation an attractive option to reduce oil dependency. However, this solution produces an electricity demand increase, causing significant overload conditions that could affect the reliability of the distribution sector.
Technical Paper

Fuel Cell Hybrid Electric Vehicle Control: Driving Pattern Recognition Techniques to Improve Vehicle Energy Efficiency

2023-08-28
2023-24-0147
Hydrogen technologies have been widely recognized as effective means to reduce Greenhouse Gases emissions, a crucial issue to target a Carbon-free world aimed by the European Green Deal. Within the road transport sector, electric vehicles with a hybrid powertrain, including battery packs and hydrogen Fuel Cells (FCs), are gaining importance owing to their adaptability to a wide variety of applications, high driving mileages and short refueling times. The control strategy is crucial to achieve a proper management of the energy flows, to maximize energy efficiency and maximize components durability and state of health. This work is focused on the design of an integrated Energy Management Strategy (EMS), whose aim is to minimize the hydrogen consumption, by operating the FC mainly in the high efficiency region while the battery pack works according to a charge sustaining mode. The proposed EMS is composed of a control algorithm and a supervisor.
Technical Paper

Fuel Cell Hybrid Electric Vehicle: Validated Fuel Cell and Battery Pack Model to Enhance Reliability in Performance Predictions

2024-04-09
2024-01-2188
In the face of the pressing climate crisis, a pivotal shift towards sustainability is imperative, particularly in the transportation sector, which contributed to nearly 22% of global Greenhouse Gas emissions in 2021. In this context, diversifying energy sources becomes paramount to prevent the collapse of sustainable infrastructure and harness the advantages of various technologies, such as Fuel Cell (FC) Hybrid Electric Vehicles. These vehicles feature powertrains comprising hydrogen FC stacks and battery packs, offering extended mileage, swift refueling times, and rapid dynamic responses. However, realizing these benefits hinges upon the adoption of a rigorously validated simulation platform capable of accurately forecasting vehicle performance across diverse design configurations and efficient Energy Management Strategies. Our study introduces a comprehensive microcar hybrid prototype model, encompassing all subsystems and auxiliaries.
X