Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Combustion and Emissions Characteristics of Dual Fuel Premixed Charge Compression Ignition with Direct Injection of Synthetic FT Kerosene Produced from Natural Gas and Port Fuel Injection of n-Butanol

2016-04-05
2016-01-0787
In this study, Premixed Charge Compression Ignition (PCCI) was investigated with alternative fuels, S8 and n-butanol. The S8 fuel is a Fischer Tropsch (FT) synthetic paraffinic kerosene (SPK) produced from natural gas. PCCI was achieved with a dual-fuel combustion incorporating 65% (by mass) port fuel injection (PFI) of n-butanol and 35% (by mass) direct injection (DI) of S8 with 35% exhaust gas recirculation. The experiments were conducted at 1500 rpm and varied loads of 1-5 bar brake mean effective pressure (BMEP). The PCCI tests were compared to an ultra-low sulfur diesel no. 2 (ULSD#2) baseline in order to determine how the alternative fuels effects combustion, emissions, and efficiencies. At 3 and 5 bar BMEP, the heat release in the PCCI mode exhibited two regions of high temperature heat release, one occurring near top dead center (TDC) and corresponds to the ignition of S8 (CN 62), and a second stage occurring ATDC from n-butanol combustion (CN 28).
Technical Paper

Premixed Charge of n-Butanol Coupled with Direct Injection of Biodiesel for an Advantageous Soot-NOx Trade-Off

2013-04-08
2013-01-0916
In this study, a direct injection (DI) compression ignition engine fueled with biodiesel was supplemented with n-butanol port fuel injection (PFI) in order to simultaneously reduce in cylinder nitrogen oxides formation, decrease soot and favorable modify their trade-off. The combustion and emission characteristics were investigated for regimes of 1-5 bars IMEP at 1400 rpm. By applying this methodology, for the regimes in which the n-butanol PFI was applied, the premixed charge combustion has been split into two regions of high temperature heat release, an early one, BTDC, and a second stage ATDC, oxidizing the soot formed from biodiesel combustion and therefore modifying favorable the soot-NOx trade-off. With n-butanol injection, the soot emissions showed a significant decrease as much as 90%, concomitantly with a 50% NOx reduction at higher PFI rates. Non-regulated emissions measurements showed increases in acetaldehyde with n-butanol PFI.
Technical Paper

Investigation of Dual Fuel PCCI (PFI of n-Butanol and DI-ULSD) Compared with DI of Binary Mixtures of the Same Fuels in an Omnivorous Diesel Engine

2015-04-14
2015-01-0857
In this study, a Premixed Charge Compression Ignition (PCCI) obtained by sequential dual fueling strategy of n-butanol port fuel injection (PFI) and direct injection of ULSD#2 was investigated against binary mixtures combustion (defined as premixed in the tank) of n-butanol and ultra-low sulfur diesel (ULSD#2) with the same n-butanol to diesel ratios (35%, 50%, 65% by mass) in an omnivorous compression ignition engine. The hypothesis of the study is that combustion phasing (respectively CA50) can be successfully controlled by the above named strategies. Both fueling strategies controlled the high reactivity of the ULSD#2 and slowed down the chemical reactions with the low cetane number fuel, n-butanol. These processes led to fuel reactivity stratification and an increase in the ignition delay observed as the amount of n-butanol increased.
Technical Paper

Simultaneous Reduction of NOX and Soot in a Diesel Engine through RCCI Operation with PFI of n-butanol and DI of Cottonseed Biodiesel

2014-04-01
2014-01-1322
This study presents the combustion and emissions characteristics of Reactivity Controlled Combustion Ignition (RCCI) produced by early port fuel injection (PFI) of low reactivity n-butanol (normal butanol) coupled with in cylinder direct injection (DI) of cottonseed biodiesel in a diesel engine. The combustion and emissions characteristics were investigated at 5.5 bars IMEP at 1400 RPM. The baseline was taken from the combustion and emissions of ULSD #2 which had an ignition delay of 13° CAD or 1.5ms. The PFI of n-butanol and DI of cottonseed biodiesel strategy showed a shorter ignition delay of 12° CAD or 1.45ms, because of the higher CN of biodiesel. The combustion proceeded first by the ignition of the pilot (cottonseed biodiesel) BTDC that produced a premixed combustion phase, followed by the ignition of n-butanol that produced a second spike in heat release at 2° CAD ATDC.
X