Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Variability in Circumstances Underlying Pedal Errors: An Investigation Using the National Motor Vehicle Crash Causation Survey

2018-04-03
2018-01-0493
Pedal errors have been widely reported as a leading cause of unintended acceleration (UA) incidents for several decades. Many governmental and scientific studies have attempted to characterize the rate of pedal errors leading to UA incidents using data from the North Carolina Crash Database. These data, however, are limited for various reasons, including the absence of an in-depth investigation of causal factors contributing to the accident. To further examine the rate of UA incidents related to pedal error, we utilized the National Motor Vehicle Crash Causation Survey (NMVCCS), a nationally representative sample of 5,471 crashes that occurred between 2005 and 2007. Using a targeted keyword search, we identified 48 potential pedal errors (30 driver-admitted), providing a national estimate of 17,919 pedal errors. We then investigated accident characteristics across these specific cases, including demographics of the drivers, vehicle characteristics, and pre-crash critical events.
Technical Paper

Driver Reactions in a Vehicle with Collision Warning and Mitigation Technology

2015-04-14
2015-01-1411
Advanced Driver Assistive System (ADAS) technologies have been introduced as the automotive industry moves towards autonomous driving. One ADAS technology with the potential for substantial safety benefits is forward collision warning and mitigation (FCWM), which is designed to warn drivers of imminent front-end collisions, potentiate driver braking responses, and apply the vehicle's brakes autonomously. Although the proliferation of FCWM technologies can, in many ways, mitigate the necessity of a timely braking response by a driver in an emergency situation, how these systems affect a driver's overall ability to safely, efficiently, and comfortably operate a motor vehicle remains unclear. Exponent conducted a closed-course evaluation of drivers' reactions to an imminent forward collision event while driving an FCWM-equipped vehicle, either with or without a secondary task administered through a hands-free cell phone.
Technical Paper

Speeds of Child Cyclists

2019-04-02
2019-01-0419
Many published studies have characterized walking and running speeds of young children. However, there is a paucity of data on the cycling speeds of very young children (4 to 5 years old). The purpose of this study was to obtain an estimate of cycling speed for boys and girls both who are learning to ride bicycles (i.e., younger children who still ride with training wheels) and who have already learned to ride bicycles (i.e., slightly older children who no longer use training wheels). A sample of 32 child riders (17 boys, 15 girls; 17 four-year-olds who still ride with training wheels, 15 five-year-olds who do not) were asked to ride a short pre-defined distance at their usual speed when riding, and again at their highest speed. We found that while age and experience can differentiate riders, there were only small differences between boys’ and girls’ speeds in either age group.
X