Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

LES Modelling of Spark-Ignition Cycle-to-Cycle Variability on a Highly Downsized DISI Engine

2015-09-06
2015-24-2403
The paper reports an activity aiming at characterizing cycle-to-cycle variability (CCV) of the spark-ignition (SI) process in a high performance engine. The numerical simulation of spark-ignition and of early flame kernel evolution are major challenges, mainly due to the time scales of the spark discharge process and to the reduced spatial scales of flame kernel. Typical mesh resolutions are insufficient to resolve the process and a dedicated treatment has to be provided at a subgrid level if the ignition process is to be properly modelled. The focus of this work is on the recent ISSIM-LES (Imposed Stretch Spark-Ignition Model) ignition model, which is based on an extension of the flame surface density (FSD) transport equation for a dedicated flame kernel treatment at subgrid scales. The FSD equation is solved immediately after spark discharge.
Journal Article

Numerical Simulation and Flame Analysis of Combustion and Knock in a DISI Optically Accessible Research Engine

2017-03-28
2017-01-0555
The increasing limitations in engine emissions and fuel consumption have led researchers to the need to accurately predict combustion and related events in gasoline engines. In particular, knock is one of the most limiting factors for modern SI units, severely hindering thermal efficiency improvements. Modern CFD simulations are becoming an affordable instrument to support experimental practice from the early design to the detailed calibration stage. To this aim, combustion and knock models in RANS formalism provide good time-to-solution trade-off allowing to simulate mean flame front propagation and flame brush geometry, as well as “ensemble average” knock tendency in end-gases. Still, the level of confidence in the use of CFD tools strongly relies on the possibility to validate models and methodologies against experimental measurements.
Journal Article

A RANS-Based CFD Model to Predict the Statistical Occurrence of Knock in Spark-Ignition Engines

2016-04-05
2016-01-0581
Engine knock is emerging as the main limiting factor for modern spark-ignition (SI) engines, facing increasing thermal loads and seeking demanding efficiency targets. To fulfill these requirements, the engine operating point must be moved as close as possible to the onset of abnormal combustion events. The turbulent regime characterizing in-cylinder flows and SI combustion leads to serious fluctuations between consecutive engine cycles. This forces the engine designer to further distance the target condition from its theoretical optimum, in order to prevent abnormal combustion to severely damage the engine components just because of few individual heavy-knocking cycles. A RANS-based model is presented in this study, which is able to predict not only the ensemble average knock occurrence but also a knock probability. This improves the knock tendency characterization, since the mean knock onset alone is a poorly meaningful indication in a stochastic event such as engine knock.
Journal Article

Development of Chemistry-Based Laminar Flame Speed Correlation for Part-Load SI Conditions and Validation in a GDI Research Engine

2018-04-03
2018-01-0174
The detailed study of part-load conditions is essential to characterize engine-out emissions in key operating conditions. The relevance of part-load operations is further emphasized by the recent regulations such as the new WLTP standard. Combustion development at part-load operations depends on a complex interplay between moderate turbulence levels (low engine speed and tumble ratio), low in-cylinder pressure and temperature, and stoichiometric-to-lean mixture quality (to maximize fuel efficiency). From a modelling standpoint, the reduced turbulence intensity compared to full-load operations complicates the interaction between different sub-models (e.g., reconsideration of the flamelet hypothesis adopted by common combustion models). In this article, the authors focus on chemistry-based simulations for laminar flame speed of gasoline surrogates at conditions typical of part-load operations. The analysis is an extension of a previous study focused on full-load operations.
Journal Article

Numerical Simulation of Gasoline and n-Butanol Combustion in an Optically Accessible Research Engine

2017-03-28
2017-01-0546
Conventional fossil fuels are more and more regulated in terms of both engine-out emissions and fuel consumption. Moreover, oil price and political instabilities in oil-producer countries are pushing towards the use of alternative fuels compatible with the existing units. N-Butanol is an attractive candidate as conventional gasoline replacement, given its ease of production from bio-mass and key physico-chemical properties similar to their gasoline counterpart. A comparison in terms of combustion behavior of gasoline and n-Butanol is here presented by means of experiments and 3D-CFD simulations. The fuels are tested on a single-cylinder direct-injection spark-ignition (DISI) unit with an optically accessible flat piston. The analysis is carried out at stoichiometric undiluted condition and lean-diluted mixture for both pure fuels.
Technical Paper

Chemistry-Based Laminar Flame Speed Correlations for a Wide Range of Engine Conditions for Iso-Octane, n-Heptane, Toluene and Gasoline Surrogate Fuels

2017-10-08
2017-01-2190
CFD simulations of reacting flows are fundamental investigation tools used to predict combustion behaviour and pollutants formation in modern internal combustion engines. Focusing on spark-ignited units, most of the flamelet-based combustion models adopted in current simulations use the fuel/air/residual laminar flame propagation speed as a background to predict the turbulent flame speed. This, in turn, is a fundamental requirement to model the effective burn rate. A consolidated approach in engine combustion simulations relies on the adoption of empirical correlations for laminar flame speed, which are derived from fitting of combustion experiments. However, these last are conducted at pressure and temperature ranges largely different from those encountered in engines: for this reason, correlation extrapolation at engine conditions is inevitably accepted. As a consequence, relevant differences between proposed correlations emerge even for the same fuel and conditions.
Technical Paper

CFD Optimization of n-Butanol Mixture Preparation and Combustion in an Research GDI Engine

2017-09-04
2017-24-0063
The recent interest in alternative non-fossil fuels has led researchers to evaluate several alcohol-based formulations. However, one of the main requirements for innovative fuels is to be compatible with existing units’ hardware, so that full replacement or smart flexible-fuel strategies can be smoothly adopted. n-Butanol is considered as a promising candidate to replace commercial gasoline, given its ease of production from bio-mass and its main physical and chemical properties similar to those of Gasoline. The compared behavior of n-butanol and gasoline was analyzed in an optically-accessible DISI engine in a previous paper [1]. CFD simulations explained the main outcomes of the experimental campaign in terms of combustion behavior for two operating conditions. In particular, the first-order role of the slower evaporation rate of n-butanol compared to gasoline was highlighted when the two fuels were operated under the same injection phasing.
Technical Paper

CFD Analysis of the Effects of Fuel Composition and Injection Strategy on Mixture Preparation and Fuel Deposit Formation in a GDI Engine

2015-09-06
2015-24-2408
In spark-ignited direct-injected engines, the formation of fuel pools on the piston is one of the major promoters of unburnt hydrocarbons and soot: in order to comply with the increasingly stringent emission regulations (EU6 and forthcoming), it is therefore necessary to limit fuel deposit formation. The combined use of advanced experimental techniques and detailed 3D-CFD simulations can help to understand the mechanisms driving fuel pool formation. In the paper, a combined experimental and numerical characterization of pool formation in a GDI engine is carried out to investigate and understand the complex interplay of all the mentioned factors. In particular, a low-load low-rpm engine operation is investigated for different ignition phasing, and the impact of both fuel formulation and instantaneous piston temperature variations in the CFD analyses are evaluated.
Technical Paper

Predictive 3D-CFD Model for the Analysis of the Development of Soot Deposition Layer on Sensor Surfaces

2023-08-28
2023-24-0012
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance.
Technical Paper

Experimental and Numerical Momentum Flux Analysis of Jets from a Hydrogen Injector

2024-04-09
2024-01-2616
The use of hydrogen in internal combustion engines is an effective approach to significantly support the reduction of CO2 emissions from the transportation sector using technically affordable solutions. The use of direct injection is the most promising approach to fully exploit hydrogen potential as a clean fuel, while preserving targets in terms of power density and emissions. In this frame, the development of an effective combustion system largely relies on the hydrogen-air mixture formation process, so to adequately control the charge stratification to mitigate pre-ignitions and knock and to minimize NOx formation. Hence, improving capabilities of designing a correct gas jet-air interaction is of paramount importance. In this paper the analysis of the evolution of a high-pressure gas jet produced by a single-hole prototype injector operated with different pressure ratios is presented.
Technical Paper

Proposal and Validation of 3D-CFD Framework for Ultra-Lean Hydrogen Combustion in ICEs

2024-04-09
2024-01-2685
In recent months, the increasing debate within the European Union to review the ban on internal combustion engines has led to the pursuit of environmentally neutral solutions for ICEs, as an attempt to promote greater economic and social sustainability. Interest in internal combustion engines remains strong to uphold the principle of technological neutrality. In this perspective, the present paper proposes a numerical methodology for 3D-CFD in-cylinder simulations of hydrogen-fueled internal combustion engines. The combustion modelling relies on G-equation formulation, along with Damköhler and Verhelst turbulent and laminar flame speeds, respectively. Numerical simulations are validated with in-cylinder pressure traces and images of chemiluminescent hydrogen flames captured through the piston of a single-cylinder optical spark-ignition engine.
X