Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Study on Charge Motion Requirements for a Class-Leading GTDI Engine

2017-09-04
2017-24-0065
An integral part of combustion system development for previous NA gasoline engines was the optimization of charge motion towards the best compromise in terms of full load performance, part load stability, emissions and, last but not least, fuel economy. This optimum balance may potentially be different in GTDI engines. While it is generally accepted that an increased charge motion level improves the mixture preparation in direct injection gasoline engines, the tradeoff in terms of performance seems to become less dominant as the boosting systems of modern engines are typically capable enough to compensate the flow losses generated by the more restrictive ports. Nevertheless, the increased boost level does not come free; increased charge motion generates higher pumping- and wall heat losses. Hence it is questionable and engine dependent, whether more charge motion is always better.
Technical Paper

Investigation into Occurrence of Megaknock and Auto-Ignition in GTDI Engines

2017-03-28
2017-01-0690
The performance of boosted gasoline engines is limited at high loads by knock, stochastic Low Speed Pre-Ignition, and Megaknock. An investigation has been carried out on the occurrence of abnormal combustion and megaknock in a 1.6 L GTDI engine with the aim to determine the causes of such phenomena. A classification of abnormal combustion events and causes is presented in order to facilitate a consistent terminology. The experiments specifically focus on the effects of exhaust residual gas on occurrence of megaknock in multi-cylinder engines. The results showed that while a misfire will not lead to megaknock, a very late combustion in one cycle, in one cylinder may lead to megaknock in the following cycle in the same or adjacent cylinder. Additionally, a recently developed multi-zone model was used to analyze the role of residual gas on auto-ignition.
Technical Paper

Methane Number Effect on the Efficiency of a Downsized, Dedicated, High Performance Compressed Natural Gas (CNG) Direct Injection Engine

2017-03-28
2017-01-0776
A fundamental requirement for natural gas (NG) and renewable methane (e.g. bio-methane or power-to-gas methane) as automotive fuel is reliable knock resistance; to enable optimization of dedicated NG engines with high compression ratio and high turbocharger boost (which enables considerable engine downsizing factors). In order to describe the knock resistance of NG, the Methane Number (MN) has been introduced. The lowest MN which generally can be found in any NG is 65, and the vast majority of NG (~ 99.8%) is delivered with a MN above 70. The MN of bio-methane and power-to-gas methane is usually far above 80. Thus, from an automotive point of view any methane fuel should at least provide a minimum Methane Number of 70 at any point of sale. But the European draft standard describing the automotive CNG fuel quality so far proposes a minimum MN limit of 65.
X