Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of in-Cylinder Bulk Flow and Methane Supply Strategies on Charge Stratification, Combustion and Emissions of a Dual-Fuel DI Diesel Engine

2009-04-20
2009-01-0949
In order to study the effects of air bulk motion and methane injection strategies on the development and pollutant levels of dual-fuel combustion, an intense experimental campaign was performed on a diesel common rail research engine with variable inlet configurations. Activating only the swirl or the tumble inlet valve of the engine, or both of them, it was possible to obtain, inside the cylinder, three different bulk flow structures. The air-methane mixture was obtained injecting the gaseous fuel into the inlet manifold varying its pressure and the injector position, either very close to the inlet valves, in order to obtain a stratified-like mixture, or more upstream, to obtain a homogeneous-like mixture. By combining the two different positions of the injector and the three air bulk flow structures, seven different inlet setup have been tested, at different values of engine speed and load.
Technical Paper

Cylinder Pressure-Based Closed Loop Combustion Control: A Valid Support to Fulfill Current and Future Requirements of Diesel Powertrain Systems

2015-09-06
2015-24-2423
The strategies adopted to control the combustion in Diesel applications play a key role when dealing with current and future requirements of automotive market for Diesel powertrain systems. The traditional “open loop” control approach aims to achieve a desired combustion behaviour by indirect manipulation of the system boundary conditions (e.g. fresh air mass, fuel injection). On the contrary, the direct measurement of the combustion process, e.g. by means of in-cylinder pressure sensor, offers the possibility to achieve the same target “quasi” automatically all over the vehicle lifetime in widely different operating conditions. Beside the traditional combustion control in closed loop (i.e. based on inner torque and/or combustion timing), the exploitation of in-cylinder pressure signal offers a variety of possible further applications, e.g. smart detection of Diesel fuel quality variation, control of combustion noise, modeling engine exhaust emission (e.g. NOx).
X