Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Changing Properties of Brake Pads and Discs during Brake Testing

2020-10-05
2020-01-1628
Earlier publications show that brake pad physical properties such as hardness, modulus and natural frequencies continue to increase at room temperature over a period of 12 months and that the changes are faster during the first 3 - 6 months. The current investigation was undertaken to see how the properties might change during testing for the pads as well as for the discs. Low-copper and copper-free formulations were tested on pickup truck and passenger car brakes. In all cases, the dynamic modulus and natural frequencies are found to decrease (not increase) after the SAE J2522 performance testing, indicating that the stiffness of the pad and that of the disc decrease faster than the mass loss due to wear. Also, the inboard pad and the outboard pad change at two different rates.
Technical Paper

The Normal-Load and Sliding-Speed Dependence of the Coefficient of Friction, and Wear Particle Generation Contributing to Friction: High-Copper and Copper-Free Formulations

2019-09-15
2019-01-2131
Automotive brakes operate under varying conditions of speed and deceleration. In other words, the friction material is subjected to a wide range of normal loads and sliding speeds. One widely accepted test procedure to evaluate, compare and screen friction materials is the SAE J2522 Brake Effectiveness test, which requires full-size production brakes to be tested on an inertia brake dynamometer. For the current investigation, disc pads of two types of 10 different formulations (5 high-copper and 5 copper-free formulations) were prepared for testing on a front disc brake suitable for a pickup truck of GVW 3,200 kg. Each pad had 2 vertical slots, and one chamfer on the leading edge and also on the trailing edge of the pad. One segment of the test procedure looks at the coefficient of friction (Mu) under different brake line pressures and different sliding speeds to determine its stability or variability.
Technical Paper

Aging Effect on Disc Pad Properties

2019-09-15
2019-01-2108
One low-copper formulation and one copper-free formulation were made into disc pads, and both of them were cured under 4 different conditions. These pads had no backing layer and no scorched layer. Pad thickness, dynamic modulus and natural frequencies were continuously monitored over a period of 12 months. After 12 months at room temperature, pad thickness, dynamic modulus and natural frequencies all increased to higher values. The low-copper formulation increased relatively rapidly during the first 60 days and the copper-free formulation increased relatively rapidly for the first 90 days, and then slowly thereafter. Two competing processes are found to be taking place simultaneously; internal stress relief leading to pad expansion and cross-linking of the resin leading to pad shrinkage. As the pad properties are changing continuously, the timing of property measurement becomes an important issue for quality assurance.
Technical Paper

Effect of Moisture Adsorption on Low-Speed and Moderate-Speed Braking: Effect on In-Stop Friction Coefficient and Low Frequency Noise

2023-11-05
2023-01-1862
Copper-free NAO disc pads of passenger cars were investigated for a combination of prior braking conditions and moisture adsorption influencing in-stop friction and noise during low-speed stops, and in-stop-friction during moderate-speed stops. Prior braking conditions and moisture adsorption strongly influence subsequent in-stop friction behavior and noise at room temperature. The low-speed in-stop friction behavior looks totally different from that of moderate-speed stops. The low-speed in-stop friction increasingly oscillates with increasing moisture adsorption and goes down towards the end of a stop, which is accompanied by increasing low-frequency noise. The moisture content needs to be quantified/specified to obtain repeatable/reproducible brake test results as the moisture is an unintended and uncontrolled ingredient of a friction material. As the disc surface roughness increases due to prior braking conditions, the friction coefficient of low-speed stops is found to decrease.
X