Refine Your Search

Search Results

Technical Paper

Lightweight Optimal Design of a Rear Bumper System Based on Surrogate Models

2015-04-14
2015-01-1362
A bumper system plays a significant role in absorbing impact energy and buffering the impact force. Important performance measures of an automotive bumper system include the maximum intrusions, the maximum absorbed energy, and the peak impact force. Finite element analysis (FEA) of crashworthiness involve geometry-nonlinearity, material-nonlinearity, and contact-nonlinearity. The computational cost would be prohibitively expensive if structural optimization directly perform on these highly nonlinear FE models. Solving crashworthiness optimization problems based on a surrogate model would be a cost-effective way. This paper presents a design optimization of an automotive rear bumper system based on the test scenarios from the Research Council for Automobile Repairs (RCAR) of Europe. Three different mainstream surrogate models, Response Surface Method (RSM), Kriging method, and Artificial Neural Network (ANN) method were compared.
X