Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Automated 6DOF Model Generation and Actuator Sizing within AFSIM

2019-03-19
2019-01-1336
The Air Force Research Laboratory has interest in automatically generating the extensive aerodynamic databases essential for six degree of freedom (6DOF) models and the use of 6DOF models for design. To be most useful, automation must include all aspects of producing the database including meshing, control surface deflections, running the CFD solution, and storage of the results. This effort applies newly-developed software to produce the desired results. Firstly, AFRL software called Computational Aircraft Prototype Syntheses (CAPS) allows automated meshing using the Advancing Front Local Reconnection (AFLR) software from Mississippi State University1 and automated control surface deflection using Engineering Sketch Pad (ESP) software from MIT/Syracuse. CAPS includes the ability to run the NASA CFD code FUN3D and interpret the FUN3D results via an Application Interface Module (AIM). This may sound like a complicated process.
Technical Paper

Development and Performance of a Reduced Order Dynamic Aircraft Model

2015-09-15
2015-01-2415
A reduced order dynamic aircraft model has been created for the purpose of enabling constructive simulation studies involving integrated thermal management subsystems. Such studies are motivated by the increasing impact of on-board power and thermal subsystems to the overall performance and mission effectiveness of modern aircraft. Previous higher-order models that have been used for this purpose have the drawbacks of much higher development time, along with much higher execution times in the simulation studies. The new formulation allows for climbs, accelerations and turns without incurring computationally expensive stability considerations; a dynamic inversion control law provides tracking of user-specified mission data. To assess the trade-off of improved run-time performance against model capability, the reduced order formulation is compared to a traditional six degree-of-freedom model of the same air vehicle.
X