Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

The Impact of Lift Axles on Fuel Economy and GHG Emissions Reduction

2015-09-29
2015-01-2874
Using lift axles enables fleet to increase the load capacity of a vehicle, eliminating the need for multiple trips, thus reducing operational costs. In a project to assess the potential of reducing fuel consumption and greenhouse gas (GHG) emissions by lifting axles on unloaded semi-trailers, lift axle regulations in various jurisdictions and the studies that led to these regulations were analyzed. The SAE Fuel Consumption Test Procedures Type II (J1321) was used for fuel consumption track test evaluations. The tests were conducted on unloaded two-axle van semi-trailers, four-axle van semitrailers, and B-trains, and resulted in fuel savings of 1.3% to 4.8%, depending on vehicle configuration and the number of axles lifted during the test.
Technical Paper

Comparison of Dynamic Performance and Fuel Consumption of Direct-drive and Overdrive Transmission Tractors

2016-09-27
2016-01-8019
The main objective of this project was to compare the fuel consumption and dynamic performances of direct-drive and overdrive transmission tractors. Fuel consumption was evaluated at constant high speed and on various road profiles, while the dynamic performance was assessed on various road profiles only. The SAE Fuel Consumption Test Procedure (J1526) was used for constant high speed fuel consumption track test evaluations. The direct-drive transmission tractor consumed less than the overdrive transmission tractor, even though it was heavier. The testing on various road profiles was conducted using a towing dynamometer, for comparing the dynamic capability of the tractors when simulating the same towing load on two hilly road profiles: the Townes Pass path (in the Rocky Mountains) and the Saguenay path (in the Saguenay region of Quebec). Each tractor was to haul the set load along the given path while trying to attain 90 km/h speed.
Technical Paper

Evaluation of Energy Efficiency Performance of Refrigerated and Heated Van Semitrailers

2016-09-27
2016-01-8053
The objective of this project was to provide pertinent information on the performance of refrigeration and heating transportation units to help fleets make decisions that will improve efficiency and increase productivity. To achieve this objective, tests were designed to measure the performance of selected refrigeration and heating units, mounted on refrigerated and heated van semitrailers. Cooling and freezing tests were carried out in summer conditions while heating tests were carried out in winter conditions, for various temperature settings. Two fundamental approaches were considered: the design of the refrigerated or heated trailer and the temperature setting of the refrigeration or heating unit. For cooling and freezing tests, the fuel consumption comparison between similar trailer models of different ages showed that newer units performed better than older ones.
Technical Paper

Evaluation of Engine Programming to Reduce Fuel Consumption

2018-09-10
2018-01-1757
The goal of this study was to evaluate the potential for reducing fuel consumption of heavy-duty vehicles by modifying their engine power ratings through programming of their engine electronic control units. This paper summarizes the activities, observations, and results obtained from tests conducted on a test track to compare default settings with those optimized for potential economic gains and improved performance. Tests for long-distance and regional transport operations were conducted at constant speed. Results from these tests showed considerable fuel savings, of approximately 7%, when the engine power rating was reduced from 450 hp to 400 hp and speed from 105 km/h to 98 km/h. In these tests, the dynamic performance of the vehicles was not affected by the reduction in power.
Technical Paper

Evaluation of Fuel Consumption and Dynamic Performance of a Compressed Natural Gas Hybrid Electric Truck

2023-10-31
2023-01-1651
The objective of the project was to compare the fuel consumption of a prototype hybrid electric CNG truck with that of two trucks: a CNG truck and a diesel truck for the similar market and operating conditions. The tests were conducted on a test route representative of the conditions encountered by these vehicles in normal driving operations. The test route length was 276 km with a maximum altitude difference of 374 m. The test route had four sections, including a hilly section with a length of 88 km. The result of the comparison between the two CNG trucks was expressed as fuel savings of CNG in percentage. The fuel consumption of the diesel truck was accurately measured using the gravimetric method. The hybrid electric CNG truck showed average fuel savings of 3.6% and demonstrated up to 7.7% in savings for the entire trip compared to the CNG truck.
Technical Paper

Evaluation of the Effectiveness of Diesel Particulate Filter Cleaning Methods and their Effect on Fuel Consumption

2023-04-11
2023-01-0376
The negative effects of long-term exposure to soot and particulate matter emissions from diesel exhaust on the human health have been widely acknowledged due to the harmful substances that exhaust gas contains. Regulators have established strict programs to determine the performance and reliability of emissions after-treatment systems and devices. Tests were conducted to evaluate the efficacy of three diesel particulate filter (DPF) cleaning methods: 1) thermal and pneumatic cleaning, 2) ultrasonic cleaning, and 3) aqueous cleaning methods. A novel non-destructive method to quantify soot and ash deposits in the filters was developed, validated and used to determine the effectiveness of the identified cleaning methods. Given the number of different cleaning methods available, testing against a set of standard parameters provided accurate comparative results.
X