Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Dynamic Programming Versus Linear Programming Application for Charging Optimization of EV Fleet Represented by Aggregate Battery

2018-04-03
2018-01-0668
This paper deals with a thorough analysis of using two fundamentally different algorithms for optimization of electric vehicle (EV) fleet charging. The first one is linear programming (LP) algorithm which is particularly suitable for solving linear optimization problems, and the second one is dynamic programming (DP) which can guarantee the global optimality of a solution for a general nonlinear optimization problem with non-convex constraints. Functionality of the considered algorithms is demonstrated through a case study related to a delivery EV fleet, which is modelled through the aggregate battery modeling approach, and for which realistic driving data are available. The algorithms are compared in terms of execution time and charging cost achieved, thus potentially revealing more appropriate algorithm for real-time charging applications.
Technical Paper

Instantaneous Optimization-based Energy Management Control Strategy for Extended Range Electric Vehicle

2013-04-08
2013-01-1460
The paper proposes an energy management control strategy for a Extended Range Electric Vehicle comprising an internal combustion engine, two electrical machines, and three clutches. The control strategy smoothly combines a rule-based strategy, extended with a battery state-of-charge (SoC) controller, with an instantaneous optimization algorithm based on equivalent consumption minimization strategy (ECMS). In addition to engine on/off logic, the rule based controller includes rules which are extracted from the global dynamic programming-based off-line optimization results. The control strategy is verified by means of computer simulation for different operating modes and certification driving cycles, and the simulation results are compared with the dynamic programming optimization results which are considered as globally optimal.
Technical Paper

Dynamic Programming-based Optimization of Control Variables of an Extended Range Electric Vehicle

2013-04-08
2013-01-1481
A dynamic programming-based algorithm is developed and used for off-line optimization of range extended electric vehicle power train control variables over standardized certification driving cycles. The aim is to minimize the fuel consumption subject to battery state-of-charge constraints and physical limits of different power train variables. The control variables to be optimized include engine torque and electric machine speed, as well as a variable that selects the power train operating mode. The optimization results are presented for four characteristic certification driving cycles and characteristic vehicle operating regimes including electric driving during charge depleting mode, hybrid driving during charge sustaining mode, and combined/blended regime.
Technical Paper

Hierarchical Neural Network-Based Prediction Model of Pedestrian Crossing Behavior at Unsignalized Crosswalks

2023-04-11
2023-01-0865
To enable smooth and low-risk autonomous driving in the presence of other road users, such as cyclists and pedestrians, appropriate predictive safe speed control strategies relying on accurate and robust prediction models should be employed. However, difficulties related to driving scene understanding and a wide variety of features influencing decisions of other road users significantly complexifies prediction tasks and related controls. This paper proposes a hierarchical neural network (NN)-based prediction model of pedestrian crossing behavior, which is aimed to be applied within an autonomous vehicle (AV) safe speed control strategy. Additionally, different single-level prediction models are presented and analyzed as well, to serve as baseline approaches.
X