Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Analysis of City Bus Driving Cycle Features for the Purpose of Multidimensional Driving Cycle Synthesis

2020-04-14
2020-01-1288
Driving cycles are typically used for estimation of vehicle fuel/energy consumption and CO2 emissions. In most of applications only the vehicle velocity vs. time profile is considered as a driving cycle, while a road slope is typically omitted. Since the road slope significantly impacts the fuel consumption, it should be included into realistic driving cycles for hilly roads. As a part of wider research of multidimensional driving cycle synthesis, this paper focuses on analysis of a broad city bus driving cycle dataset recorded in the city of Dubrovnik. The analysis is aimed at revealing the impact of road slope on velocity and acceleration distributions, and clustering the recorded data into several groups reflecting various driving and traffic congestion characteristics. Finally, the Markov chain method is employed to synthesize 3D driving cycles for the selected data clusters, where the Markov chain states include vehicle velocity, vehicle acceleration, and road slope.
Technical Paper

Dynamic Programming-based Optimization of Control Variables of an Extended Range Electric Vehicle

2013-04-08
2013-01-1481
A dynamic programming-based algorithm is developed and used for off-line optimization of range extended electric vehicle power train control variables over standardized certification driving cycles. The aim is to minimize the fuel consumption subject to battery state-of-charge constraints and physical limits of different power train variables. The control variables to be optimized include engine torque and electric machine speed, as well as a variable that selects the power train operating mode. The optimization results are presented for four characteristic certification driving cycles and characteristic vehicle operating regimes including electric driving during charge depleting mode, hybrid driving during charge sustaining mode, and combined/blended regime.
Technical Paper

Optimal Energy Management Control of a Parallel Plug-In Hybrid Electric Vehicle in the Presence of Low Emission Zones

2019-04-02
2019-01-1215
In order to reduce air and noise pollution in urban environments, low emission zones (LEZ) are being introduced in many cities worldwide. This paper deals with design of a LEZ-anticipating control strategy for a Plug-in Hybrid Electric Vehicle (PHEV) given in a P2-type parallel powertrain configuration. A control-oriented backward-looking model of the PHEV powertrain is used as a design basis. The core control strategy is based on combining a rule-based (RB) controller including an explicit battery state-of-charge (SoC) controller and an equivalent consumption minimization strategy (ECMS), and it is superimposed by generating an optimal SoC reference trajectory aimed at enabling pure electric driving through forthcoming LEZs and minimizing the overall fuel consumption. The optimal SoC reference trajectory is generated by minimizing its length over travelled distance.
Journal Article

Synthesis and Validation of Multidimensional Driving Cycles

2021-04-06
2021-01-0125
Driving cycles are usually defined by vehicle speed as a function of time and they are typically used to estimate fuel consumption and pollutant emissions. Currently, certification driving cycles are mainly used for this purpose. Since they are artificially generated, the resulting estimates and analyzes can generally be biased. In order to address these shortcomings, recent research efforts have been directed towards development of statistically representative synthetic driving cycles derived from recorded real-world data. To this end, this paper focuses on synthesis of multidimensional driving cycles using the Markov chain-based method and particularly on their validation. The synthesis is based on Markov chain of fourth order, where the road slope is accounted, as well. The corresponding transition probability matrix is implemented in the form of a sparse matrix parameterized with a rich set of recorded city bus driving cycles.
Technical Paper

An Extended Range Electric Vehicle Backward-looking Model Accounting for Powertrain Transient Effects

2020-04-14
2020-01-1442
Since the Extended range electric vehicle (EREV) powertrain structure is based on different power sources, a key vehicle design activity is related to development of an optimal control strategy for achieving a high fuel economy potential. The central role in developing an optimized energy management strategy is related to availability of computationally-efficient, high-fidelity EREV powertrain model. This paper proposes a method for developing an extended quasi-static backward-looking EREV powertrain model, which when compared to traditional backward model accounts for powertrain transient effects through additional fuel and battery state-of-charge consumptions. The effects of powertrain transients are characterized by means of extensive simulations of dynamic forward-looking EREV powertrain model covering a wide array of possible powertrain transient scenarios.
X