Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Research of Occupant kinematics and Injury values of Hybrid III, THOR, and human FE model in Oblique Frontal Impact

2016-04-05
2016-01-1521
This paper describes impact kinematics and injury values of Hybrid III AM50, THOR AM50 and THUMS AM50 in simulated oblique frontal impact conditions. A comparison was made among them in driver and passenger seat positions of a midsize sedan car finite element (FE) model. The simulation results indicated that the impact kinematics of THOR was close to that of THUMS compared to that of the Hybrid III. Both THOR and THUMS showed z-axis rotation of the rib cage, while Hybrid III did not. It was considered that the rib cage rotation was due primarily to the oblique impact but was allowed by flexibility of the lumbar spine in THOR and THUMS. Lateral head displacement observed in both THOR and THUMS was mostly induced by that rotation in both driver seat and passenger seat positions. The BrIC, thorax and abdominal injury values were close to each other between THOR and THUMS, while HIC15 and Acetabulum force values were different.
Technical Paper

A Study of Driver Injury Mechanism in High Speed Lateral Impacts of Stock Car Auto Racing Using a Human Body FE Model

2011-04-12
2011-01-1104
This paper analyzed the mechanisms of injury in high speed, right-lateral impacts of stock car auto racing, and interaction of the occupant and the seat system for the purpose of reducing the risk of injury, primarily rib fractures. Many safety improvements have been made to stock car racing recently, including the Head and Neck Support devices (HANS®), the 6-point restraint harnesses, and the implementation of the SAFER Barrier. These improvements have contributed greatly to mitigating injury during the race crash event. However, there is still potential to improve the seat structure and the understanding of the interaction between the driver and the seat in the continuation of making racing safety improvements. This is particularly true in the case of right-lateral impacts where the primary interaction is between the seat supports and the driver and where the chest is the primary region of injury.
Technical Paper

Development of Side Impact Dummy FE Models using Reverse Engineering

2012-04-16
2012-01-0091
This paper describes the development of dummy FE models to be used for side impact simulations. The precise geometries of the ES-2re dummy and the SID-IIs dummy were measured at a pitch of 1.0 mm using X-ray CT scan. The material properties and the mechanical responses of the components were measured in static and dynamic tests and were used for the model validation. The models were further validated to US-NCAP side impact requirements. Good correlation was seen for both response time history, and to peak deformation values. It is shown that modeling the precise dummy internal structure in addition to the external geometry and applying accurate material properties enabled simulation of deformation kinematics and load transfer inside the dummies. As a result, it was possible to accurately simulate the injury value time histories in an actual test, and understand the mechanisms causing changes to the loading.
Technical Paper

Analysis of Occupant Kinematics of Rollover Buck Test

2016-04-05
2016-01-1516
Approximately 20% of traffic fatalities in United States 2012 were caused by rollover accidents. Mostly injured parts were head, chest, backbone and arms. In order to clarify the injury mechanism of rollover accidents, kinematics of six kinds of Anthropomorphic Test Devices (ATD) and Post Mortem Human Subjects (PMHS) in the rolling compartment, whose body size is 50th percentile male (AM50), were researched by Zhang et al.(2014) using rollover buck testing system. It was clarified from the research that flexibility of the backbone and thoracic vertebra affected to occupant’s kinematics. On the other hand, the kinematics research of body size except AM50 will be needed in order to decrease traffic fatalities. There were few reports about the researches of occupant kinematics using FE models of body sizes except AM50.
Journal Article

Analysis of Driver Kinematics and Lower Thoracic Spine Injury in World Endurance Championship Race Cars during Frontal Impacts

2017-03-28
2017-01-1432
This study used finite element (FE) simulations to analyze the injury mechanisms of driver spine fracture during frontal crashes in the World Endurance Championship (WEC) series and possible countermeasures are suggested to help reduce spine fracture risk. This FE model incorporated the Total Human Model for Safety (THUMS) scaled to a driver, a model of the detailed racecar cockpit and a model of the seat/restraint systems. A frontal impact deceleration pulse was applied to the cockpit model. In the simulation, the driver chest moved forward under the shoulder belt and the pelvis was restrained by the crotch belt and the leg hump. The simulation predicted spine fracture at T11 and T12. It was found that a combination of axial compression force and bending moment at the spine caused the fractures. The axial compression force and bending moment were generated by the shoulder belt down force as the driver’s chest moved forward.
Journal Article

Influence of Pre-impact Pedestrian Posture on Lower Extremity Kinematics in Vehicle Collisions

2016-04-05
2016-01-1507
Lower extremities are the most frequently injured body regions in vehicle-to-pedestrian collisions and such injuries usually lead to long-term loss of health or permanent disability. However, influence of pre-impact posture on the resultant impact response has not been understood well. This study aims to investigate the effects of preimpact pedestrian posture on the loading and the kinematics of the lower extremity when struck laterally by vehicle. THUMS pedestrian model was modified to consider both standing and mid-stance walking postures. Impact simulations were conducted under three severities, including 25, 33 and 40 kph impact for both postures. Global kinematics of pedestrian was studied. Rotation of the knee joint about the three axes was calculated and pelvic translational and rotational motions were analyzed.
X