Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

A CFD Analysis Method for Prediction of Vehicle Exterior Wind Noise

2017-03-28
2017-01-1539
High frequency wind noise caused by turbulent flow around the front pillars of a vehicle is an important factor for customer perception of ride comfort. In order to reduce undesirable interior wind noise during vehicle development process, a calculation and visualization method for exterior wind noise with an acceptable computational cost and adequate accuracy is required. In this paper an index for prediction of the strength of exterior wind noise, referred to as Exterior Noise Power (ENP), is developed based on an assumption that the acoustic power of exterior wind noise can be approximated by the far field acoustic power radiated from vehicle surface. Using the well-known Curle’s equation, ENP can be represented as a surface integral of an acoustic intensity distribution, referred to as Exterior Noise Power Distribution (ENPD). ENPD is estimated from turbulent surface pressure fluctuation and mean convective velocity in the vicinity of the vehicle surface.
Journal Article

Development of Prediction Method for Engine Compartment Water Level by Using Coupled Multibody and Fluid Dynamics

2017-03-28
2017-01-1328
When vehicles run on the flooded road, water enters to the engine compartment and sometimes reaches the position of the air intake duct and electrical parts and causes the reliability problems. Numerical simulation is an effective tool for this phenomenon because it can not only evaluate the water level before experiment but also identify the intrusion route. Recently, the gap around the engine cooling modules tends to become smaller and the undercover tends to become bigger than before in order to enhance the vehicle performance (e.g., aerodynamics, exterior noise). Leakage tightness around the engine compartment becomes higher and causes an increase of the buoyancy force from the water. Therefore the vehicle attitude change is causing a greater impact on the water level. This paper describes the development of a water level prediction method in engine compartment while running on the flooded road by using the coupled multibody and fluid dynamics.
X