Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Design and Development of Intake Ports for 2-Valve & 4-Valve Configurations for Heavy Duty Off-Highway Diesel Engine

2019-10-11
2019-28-0042
Future emission limits for off-highway application engines need advanced power train solutions to meet stringent emissions legislation, whilst meeting customer requirements and minimizing engineering costs. Development of diesel engines for off-highway application for different power segments need different intake port design solutions to optimise in-cylinder flow structure for efficient combustion. With adaptation of low pressure mechanical fuel injection system, intake port development becomes an important stage for reduction of emission formation at the source and improvement in fuel economy. In this paper, intake port design and development process is elaborated for two different power ratings of 75 hp and 120 hp of off-highway engine. 2-valve and 4-valve configurations are deployed for the same cylinder bore size.
Technical Paper

Optimization of In-Cylinder Flow and Swirl Generation Analysis for a Naturally Aspirated Diesel Genset Engine for Emission Reduction through Intake Port Design

2019-10-11
2019-28-0024
Engine in-cylinder flow structure governs the combustion process and directly influences emission formation and fuel consumption at the source. In naturally aspirated DI diesel engine, combustion process coupled with low pressure mechanical fuel injection systems set different requirements for inlet port performance. In-cylinder swirl needs to be optimized for efficient combustion to meet emission levels and fuel consumption targets. Thus, intake port design optimization process becomes a vital requirement. In the present paper intake port design optimization is carried out for single cylinder naturally aspirated engine using mechanical fuel injection systems. The objective is to investigate in-cylinder flow field developed by intake port designs, study the effects of geometrical details of various port cross sections on flow velocity and pressure fields and establish a relationship with intake port performance parameters i.e. swirl and flow coefficient.
Technical Paper

Combustion Characterizations of Ethanol/Gasoline Blended Fuel in SI Engine Using Fractal Combustion Model

2017-01-10
2017-26-0041
Worldwide IC engine fuels are increasingly blended with oxygenate fuels to reduce the dependency on the conventional petroleum reserves. Among these fuels, biomass-derived ethanol is very popular for SI engine operation as it is not only economical and renewable source of energy, but it also allows increasing the engine performance. High latent heat of vaporization of ethanol combined with its high octane number make the engine less sensitive to knock. However, the real potential of ethanol blended fuels still has to be explored and their impact on engine combustion characterization has to be investigated. The objective of this study is to extend predictive fractal combustion model for ethanol/gasoline blends and assess the influence of ethanol addition to gasoline in a Port Fuel Injection (PFI) engine. Quasi dimensional simulation is carried out using AVL Boost under wide open throttle condition at 1500 and 3000 rpm.
Technical Paper

Numerical and Experimental Analysis of Intake Flow Structure and Swirl Optimization Strategies in Four-Valve Off-Highway Diesel Engine

2019-01-09
2019-26-0042
Future emission limits for off-highway application engines need advanced power train solutions to meet stringent emissions legislation, whilst meeting customer requirements and minimizing engineering costs. DI diesel engines with four valves per cylinder are widely used in off- highway applications because of the fundamental advantages of higher volumetric efficiency, lower pumping loss, symmetric fuel spray & distribution in combination with the symmetric air motion which can give nearly optimal mixture formation and combustion process. As a result, the fuel consumption, smoke levels and exhaust emissions can be considerably reduced. In particular, the four-valve technology, coupled with mechanical low pressure and electronic high pressure fuel delivery systems set different requirements for inlet port performance. In the present paper four valve intake port design strategies are analysed for off highway engine using mechanical fuel injection systems.
X