Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Multi-Shot Icing Simulations with Automatic Re-Meshing

2019-06-10
2019-01-1956
A full-automated CFD mesh generation technique has been developed and implemented for 3-D aircraft icing simulations to permit robust 45-minute ice accretion simulations in support of icing certification campaigns. The changes in the shape of the aircraft surfaces due to accreting ice and their effects on the air and droplet flow are accounted for in a quasi-steady manner by subdividing the total icing time into sequential steps of shorter duration, updating the computational grid at each step. This “multi-shot” ice accretion approach requires robust and accurate grid re-meshing for it to be embedded in engineering design and analysis workflows. ANSYS FENSAP-ICE has been coupled to Fluent Meshing to take advantage of generic and highly automated surface displacement and mesh wrapping tools. A wide spectrum of geometries is supported, ranging from full-size aircraft to air data probes, turbomachinery components, rotors and propellers.
Technical Paper

Numerical Simulation of Aircraft and Variable-Pitch Propeller Icing with Explicit Coupling

2019-06-10
2019-01-1954
A 3D CFD methodology is presented to simulate ice build-up on propeller blades exposed to known icing conditions in flight, with automatic blade pitch variation at constant RPM to maintain the desired thrust. One blade of a six-blade propeller and a 70-passenger twin-engine turboprop are analyzed as stand-alone components in a multi-shot quasi-steady icing simulation. The thrust that must be generated by the propellers is obtained from the drag computed on the aircraft. The flight conditions are typical for a 70-passenger twin-engine turboprop in a holding pattern in Appendix C icing conditions: 190 kts at an altitude of 6,000 ft. The rotation rate remains constant at 850 rpm, a typical operating condition for this flight envelope.
Technical Paper

An Ice Shedding Model for Rotating Components

2019-06-10
2019-01-2003
A CFD simulation methodology is presented to evaluate the ice that sheds from rotating components. The shedding detection is handled by coupling the ice accretion and stress analysis solvers to periodically check for the propagation of crack fronts and possible detachment. A novel approach for crack propagation is highlighted where no change in mesh topology is required. The entire computation from flow to impingement, ice accretion and crack analysis only requires a single mesh. The accretion and stress module are validated individually with published data. The analysis is extended to demonstrate potential shedding scenarios on three complex industrially-relevant 3D cases: a helicopter blade, an engine fan blade and a turboprop propeller. The largest shed fragment will be analyzed in the context of FOD damage to neighboring aircraft/component surfaces.
X