Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Drivable Area Detection and Vehicle Localization Based on Multi-Sensor Information

2020-04-14
2020-01-1027
Multi-sensor information fusion framework is the eyes for unmanned driving and Advanced Driver Assistance System (ADAS) to perceive the surrounding environment. In addition to the perception of the surrounding environment, real-time vehicle localization is also the key and difficult point of unmanned driving technology. The disappearance of high-precision GPS signal suddenly and defect of the lane line will bring much more difficult and dangerous for vehicle localization when the vehicle is on unmanned driving. In this paper, a road boundary feature extraction algorithm is proposed based on multi-sensor information fusion of automotive radar and vision to realize the auxiliary localization of vehicles. Firstly, we designed a 79GHz (78-81GHz) Ultra-Wide Band (UWB) millimeter-wave radar, which can obtain the point cloud information of road boundary features such as guardrail or green belt and so on.
Technical Paper

3D Automotive Millimeter-Wave Radar with Two-Dimensional Electronic Scanning

2017-03-28
2017-01-0047
The radar-based advanced driver assistance systems (ADAS) like autonomous emergency braking (AEB) and forward collision warning (FCW) can reduce accidents, so as to make vehicles, drivers and pedestrians safer. For active safety, automotive millimeter-wave radar is an indispensable role in the automotive environmental sensing system since it can work effectively regardless of the bad weather while the camera fails. One crucial task of the automotive radar is to detect and distinguish some objects close to each other precisely with the increasingly complex of the road condition. Nowadays almost all the automotive radar products work in bidimensional area where just the range and azimuth can be measured. However, sometimes in their field of view it is not easy for them to differentiate some objects, like the car, the manhole covers and the guide board, when they align with each other in vertical direction.
Technical Paper

Targets Location for Automotive Radar Based on Compressed Sensing in Spatial Domain

2018-08-07
2018-01-1621
Millimeter wave automotive radar is one of the most important sensors in the Advanced Driver Assistance System (ADAS) and autonomous driving system, which detects the target vehicles around the ego vehicle via processing transmitted and echo signals. However, the sampling rate of classical radar signal processing methods based on Nyquist sampling theorem is too high and the resolution of range, velocity and azimuth can’t meet the requirement of highly autonomous driving, especially azimuth. In spatial domain, targets are sparse distribution in the detection range of automotive radar. To solve these problems, the algorithm for targets location based on compressed sensing for automotive radar is proposed in this paper. Besides, the feasibility of the algorithm is verified through the simulation experiments of traffic scene. The range-doppler-azimuth model can be used to estimate the distance, velocity and azimuth of the target accurately.
Technical Paper

Semantic Segmentation for Traffic Scene Understanding Based on Mobile Networks

2018-08-07
2018-01-1600
Real-time and reliable perception of the surrounding environment is an important prerequisite for advanced driving assistance system (ADAS) and automatic driving. And vision-based detection plays a significant role in environment perception for automatic vehicles. Although deep convolutional neural networks enable efficient recognition of various objects, it has difficulty in accurately detecting special vehicles, rocks, road pile, construction site, fence and so on. In this work, we address the task of traffic scene understanding with semantic image segmentation. Both driveable area and the classification of object can be attained from the segmentation result. First, we define 29 classes of objects in traffic scenarios with different labels and modify the Deeplab V2 network. Then in order to reduce the running time, MobileNet architecture is applied to generate the feature map instead of the original models.
Technical Paper

Robust Multi-Lane Detection and Tracking in Temporal-Spatial Based on Particle Filtering

2019-04-02
2019-01-0885
The camera-based advanced driver assistance systems (ADAS) like lane departure warning system (LDWS) and lane keeping assist (LKA) can make vehicles safer and driving easier. Lane detection is indispensable for these lane-based systems for achieving vehicle local localization and behavior prediction. Since the vision is vulnerable to the variable environment conditions such as bad weather, occlusions and illumination, the robustness is important. In this paper, a robust algorithm for detecting and tracking multiple lanes with arbitrary shape is proposed. We extend the previously lane detection and tracking process from the space domain to the temporal-spatial domain by using a more robust and general multi-lane model. First, new slice images containing temporal information are generated from image sequences. Instead of binarization process, we use a more general detector for extracting the lane marker candidates with prior knowledge to generate the binary slice image.
X