Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Investigation in Diesel Oxidation Catalyst by Developing a Novel Catalytic Materials for the Control of HC, CO and Smoke Emissions

2020-09-25
2020-28-0458
Diesel-powered engines are used worldwide for efficient transportation and stationary power generation. The significant drawback of a diesel engine is its harmful emissions. The stringent emission norms enforced by the different organization demands effective catalyst system to control the gaseous emissions. Diesel oxidation catalysts are the extensively used technique for diesel engines to control HC and CO emissions. Currently the catalyst in the diesel oxidation system employs precious metals such as Pt/Pd/Rh to reduce the emissions and makes the DOC system expensive. This paper presents a cost-effective catalyst prepared to employ non-noble mixed oxides of copper and nickel supported on non-conventional support (i.e.) ceria doped calcium borophosphates (Ce-SCaPB). Initially, ceramic beads (5mm X 5mm) were coated with (Ce-SCaPB) support material. Secondly, the copper and nickel salts were deposited on the Ce-SCaPB coated ceramic beads and subsequently reduced and calcined.
Technical Paper

Simultaneous Reduction of HC, NOx and PM by Using Active Regeneration Technique

2016-04-05
2016-01-0912
Exhaust after treatment devices in diesel engines play a crucial role in control of harmful emissions. The noxious emission released from diesel engines causes a variety of problems to both human beings and the environment. The currently used devices are implemented with new catalyst technologies like DOC, SCR and catalytic converter are all designed to meet stringent emission regulations. Although these devices have considerable conversion efficiency, they are not without drawbacks. The catalysts used in these devices are rarely available and are also very expensive. Diesel Particulate Filter (DPF) is the device currently employed to collect particulate matter. It also has drawbacks like high back pressure, thermal durability restrictions, regeneration issues and poor collection of smaller size particles. In the case of biodiesel these fine sized particles are emitted in larger quantity.
X