Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Hardware-in-the-Loop-Based Virtual Calibration Approach to Meet Real Driving Emissions Requirements

2018-04-03
2018-01-0869
The use of state-of-the-art model-based calibration tools generate only limited benefits for seamless validation in powertrain calibration due to the often neglected system-level simulation of a closed-loop vehicle environment. This study presents a Hardware-in-the-Loop (HiL)-based virtual calibration approach to establish an accurate virtual calibration platform using physical plant models. It is based on a customisable real-time HiL simulation environment. The use of physical models to predict the behaviour of a complete powertrain makes the HiL test bench particularly suited for Engine Control Unit (ECU) calibration. With the virtual test rig approach, the calibration for the critical extended driving and ambient conditions of the new Real Driving Emissions (RDE) requirements can efficiently be optimised. This technique offers a clear advantage in terms of reducing calibration time and costs.
Technical Paper

Accurate Mean Value Process Models for Model-Based Engine Control Concepts by Means of Hybrid Modeling

2019-04-02
2019-01-1178
Advanced powertrains for modern vehicles require the optimization of conventional combustion engines in combination with tailored electrification and vehicle connectivity strategies. The resulting systems and their control devices feature many degrees of freedom with a large number of available adjustment parameters. This obviously presents major challenges to the development of the corresponding powertrain control logics. Hence, the identification of an optimal system calibration is a non-trivial task. To address this situation, physics-based control approaches are evolving and successively replacing conventional map-based control strategies in order to handle more complex powertrain topologies. Physics-based control approaches enable a significant reduction in calibration effort, and also improve the control robustness.
Technical Paper

Real-Time Modeling of a 48V P0 Mild Hybrid Vehicle with Electric Compressor for Model Predictive Control

2019-04-02
2019-01-0350
In order to reduce pollutant and CO2 emissions and fulfill future legislative requirements, powertrain electrification is one of the key technologies. In this context, especially 48V technologies offer an attractive cost to CO2 reduction ratio. 48V mild hybrid powertrains greatly benefit from additional electric intake air compression (E-Charging) and direct torque assist by an electric machine (E-Boosting). Both systems significantly improve the transient engine behavior while reducing the low end torque drawbacks of extreme downsizing and downspeeding. Since E-Charging and E-Boosting have different characteristics concerning transient torque response and energy efficiency, application of model predictive control (MPC) is a particularly suitable method to improve the operating strategy of these functions. MPC requires fast running real-time capable models that are challenging to develop for systems with pronounced nonlinearities.
X