Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Micro-Hole Nozzle on Diesel Spray and Combustion

2018-04-03
2018-01-0301
The influence of nozzle geometry on spray and combustion of diesel continues to be a topic of great research interest. One area of promise, injector nozzles with micro-holes (i.e. down to 30 μm), still need further investigation. Reduction of nozzle orifice diameter and increased fuel injection pressure typically promotes air entrainment near-nozzle during start of injection. This leads to better premixing and consequently leaner combustion, hence lowering the formation of soot. Advances in numerical simulation have made it possible to study the effect of different nozzle diameters on the spray and combustion in great detail. In this study, a baseline model was developed for investigating the spray and combustion of diesel fuel at the Spray A condition (nozzle diameter of 90 μm) from the Engine Combustion Network (ECN) community.
Technical Paper

Investigation of an Advanced Combustion System for Stoichiometric Diesel to Reduce Soot Emissions

2019-01-15
2019-01-0023
Diesel engines are facing increased competition from gasoline engines in the light-duty and small non-road segments, primarily due to the high relative cost of emissions control systems for lean-burn diesel engines. Advancements in gasoline engine technology have decreased the operating cost advantage of diesels and the relatively high initial-cost disadvantage is now too large to sustain a strong business position. SwRI has focused several years of research efforts toward enabling diesel engine combustion systems to operate at stoichiometric conditions, which allows the application of a low-cost three-way catalyst emission control system which has been well developed for gasoline spark-ignited engines. One of the main barriers of this combustion concept is the result of high smoke emissions from poor fuel/air mixing.
X