Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Direct 1D/3D (GT-SUITE/SimericsMP+) Coupled Computational Approach to Study the Impact of Engine Oil Pan Sloshing on Lubrication Pump Performance

2020-04-14
2020-01-1112
During a vehicle drive cycle, the oil in the engine oil pan sloshes very vigorously due to the acceleration of the vehicle. This can cause the pickup tube in the engine oil pan to become uncovered from oil and exposed to air, which affects the lubrication pump performance. Engine oil pan sloshing is inherently a 3D problem as the free oil surface is constantly changing. Multi-dimensional Computational Fluid Dynamics (CFD) methods are very useful to simulate such problems with high detail and accuracy but are computationally very expensive. Part of the engine lubrication system, such as the pump, can be modelled in 1D which can predict accurate results at relatively high computational speeds. By utilizing the advantages of both 1D and 3D CFD models, a coupled 1D-3D simulation approach has been developed to capture the detailed oil sloshing phenomenon in SimericsMP+ and the system level simulation is conducted in GT-SUITE where 3D spatial data is not required.
Journal Article

A CFD study of an Electronic Hydraulic Power Steering Helical External Gear Pump: Model Development, Validation and Application

2016-04-05
2016-01-1376
External gear pumps are positive displacement devices which perform with excellent efficiencies over a wide load and speed range. This wide range of performance is primarily due to micron-level leakage gaps in such machines which prevent large leakages at increasing loads. The present paper details a novel approach implemented in the commercial CFD tool PumpLinx that can capture the details of the micron level gaps, and model such machines accurately. The steps in creation of the model from original CAD geometry are described. In particular, the CFD mesh is created using a specialized template structured meshing method within PumpLinx especially created for external gear pumps and motors. This makes process of mesh creation and flow solution through complicated geometries of a gear pump efficient and streamlined.
Journal Article

Heat Transfer Analysis of an Electric Motor Cooled by a Large Number of Oil Sprays Using Computational Fluid Dynamics

2022-03-29
2022-01-0208
This paper reports on an analytical study of the heat transfer and fluid flow in an electric vehicle e-Motor cooled by twenty five sprays/jets of oil. A three-dimensional, quasi-steady state, multi-phase, computational fluid dynamics (CFD) and conjugate heat transfer (CHT) model was created using a commercial CFD software. The transport equations of mass, momentum, energy and volume fraction were solved together with models for turbulence and wall treatment. An explicit formulation of the volume of fluid (VOF) technique was used to simulate the sprays, a time-implicit formulation was used for the flow-field and three dimensional conduction heat transfer with non-isotropic thermal conductivities was used to simulate the heat transfer in the windings.
Technical Paper

Multidimensional CFD Studies of Oil Drawdown in an i-4 Engine

2022-03-29
2022-01-0397
A computational study based on unsteady Reynolds-Averaged-Navier-Stokes that resolves the gas-liquid interface was performed to examine the unsteady multiphase flow in a 4 cylinder Inline (i-4) engine. In this study, the rotating motion of the crankshaft and reciprocating motion of the pistons were accounted for to accurately predict the oil distribution in various parts of the engine. Three rotational speeds of the crankshaft have been examined: 1000, 2800, and 4000 rpm. Of particular interest is to examine the mechanisms governing the process of oil drawdown from the engine head into the case. The oil distributions in other parts of the engine have also been investigated to understand the overall crankcase breathing process. Results obtained show the drawdown of oil from the head into the case to be strongly dependent on the venting strategy for the foul air going out of the engine through the PCV system.
Journal Article

A Transient 3D CFD Thermal Model of the Complete DI Diesel Engine Fuel System

2023-04-11
2023-01-0949
This paper reports on a transient, three-dimensional computational fluid dynamics (CFD) study of flow and heat transfer in the complete fuel system of an inline 6-cylinder, direct injection (DI) diesel engine used in commercial applications. The CFD software Simerics-MP+ was used for this purpose. Diesel engine development, to meet fuel economy and exhaust emission standards, requires the precise integration of each component in the fuel system in order to reliably deliver the fuel to the combustion chamber as a function of crank angle to the combustion chamber, at the specified injection pressure. Both the model set-up and run times are practical, thus the simulation tool can play a key role in the design and development of diesel engine fuel systems.
X