Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Optimization of the Aerodynamic Lift and Drag of LYNK&CO 03+ with Simulation and Wind Tunnel Test

2020-04-14
2020-01-0672
Based on the first sedan of the LYNK&CO brand from Geely, the high-performance configuration equipped with an additional aerodynamic package was developed. The aerodynamic package including front wheel deflectors, front lip, side skirts, rear spoiler, and rear diffuser, was required to be upgraded to generate enough aerodynamic downforce for better handling stability, without compromising the aerodynamic drag of the vehicle too much to keep a low fuel consumption. Starting from the baseline configuration of the aerodynamics package provided by the design studio, the components were optimized for aerodynamic drag and lift using the simulation approach with PowerFLOW in combination with a design space exploration method. As a result, the targets for the aerodynamic coefficients of the vehicle and in particular a good trade-off between lift and drag were achieved.
Technical Paper

Vehicle Aerodynamic Development Using a Novel Reduced Turn-Around Time Approach

2021-04-06
2021-01-0944
Automotive manufacturers are under continuous pressure to satisfy changing consumer demands and regulatory requirements in an increasingly competitive landscape. This requires Aerodynamic departments to evaluate more design ideas in less development time. Aerodynamic departments are seeking to speed up their analysis in order to provide more feedback on performance to design and styling. Vehicle designers already leverage Computational Fluid Dynamics in order to quickly assess vehicle aerodynamic performance during product development. However, in order to meet modern development challenges, reducing simulation cost and turn-around-time is necessary. To that end, a novel approach to reducing simulation time of vehicle aerodynamics without sacrificing accuracy was tested in this paper. The methodology is called Transient Boundary Seeding, and enables the usage of a reduced simulation domain without the loss of information from the omitted region.
Technical Paper

Improvement for the Validation of the Aerodynamic Simulation and Wind Tunnel Test for the FAW-VW T-ROC

2021-04-06
2021-01-0960
Owing to the advantages and the rapid development of CFD methods in recent decades, CFD has become one of the most widely used tools in the field of automotive aerodynamic development. To improve the credibility of simulation, benchmarking with experiment is necessary, for which a large variety of factors should be considered, including the accuracy of digital model for the vehicle, the replication of the experimental environment in the simulation, and others. In the current aerodynamic development of passenger cars at FAW-VW, CFD models used for evaluation and optimization of aerodynamic performance replicate an open-road scenario with low blockage and full moving floor. In order to improve the benchmarking accuracy, the study of the influence of the wind tunnel geometry and ground system on simulation was carried out in this paper.
X