Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Spray Guided DISI Using Side Mounted Multi-Hole Injector

2007-04-16
2007-01-1413
Concept of the spray guided direct Injection spark ignition (DISI) was studied to improve the performance of wall-guided DISI. Focusing the effect of multi-hole injector location either centrally-mounted or side-mounted, mixture distribution and ignitability was studied. Computational Fluid Dynamics (CFD) modeling was applied to investigate the history of mixture, ignitable mixture existence around the spark plug in light load condition and homogeneity in full load condition. CFD results showed that side-mounted injection has an advantage over centrally-mounted injection in terms of mixture stability around the spark plug, although the slight disadvantage in homogeneity in full load condition. Side-mounted injection was selected because of robust ignitability potential and further experimental investigation was conducted. Stable combustion window against injection and ignition timing was investigated in experimentally.
Technical Paper

Analysis of Heat Transfer Phenomena on High Response Heat Insulation Coatings by Instantaneous Heat Flux Measurement and Boundary Layer Visualization

2015-09-01
2015-01-1996
Coating the heat insulation materials on the combustion chamber walls is one of the solutions to reduce the cooling loss of internal combustion engines. In order to examine the coatings, the evaluation of the heat transfer coefficient and the analysis of the heat transfer phenomena on the heat insulated walls are important. Firstly, the highly-responsive wall temperature sensor is developed, and the instantaneous wall heat flux is measured to evaluate the heat transfer coefficient on the heat insulated walls. The results show that the Nusselt number on the heat insulated walls is less influenced by the Reynolds number variation than that on the metal walls. Secondly, the high speed µ-PIV is employed to analyze the various turbulent flow characteristics. The results show that the turbulent dissipation on the heat insulated walls is smaller than that on the metal walls.
X