Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Evaluation of the Stability and Ignition Quality of Diesel-Biodiesel-Butanol Blends

2017-10-08
2017-01-2320
FAME is the most common renewable component of conventional automotive diesel. Despite the advantages, biodiesel is more susceptible to oxidative deterioration and due to its chemical composition as well as its higher affinity to water, is considered to be a favorable substrate for microorganisms. On the other hand, apart from biodiesel, alcohols are considered to be promising substitutes to conventional diesel fuel because they can offer higher oxygen concentration leading to better combustion characteristics and lower exhaust emissions. More specifically, n-butanol is a renewable alcohol demonstrating better blending capabilities and properties when it is added to diesel fuel, as its composition is closer to conventional fuel, when compared ethanol to for example. Taking into consideration the alleged disinfectant properties of alcohols, it would be interesting to examine also the microbial stability of blends containing n-butanol in various concentrations.
Technical Paper

Diesel Fuel Improvers and Their Effect on Microbial Stability of Diesel/Biodiesel Blends

2018-09-10
2018-01-1751
Additives that enhance properties, such as cetane number or cold flow, are introduced in diesel-biodiesel blends in order to upgrade its performance as well as to aid its handling and distribution. Furthermore, in order to protect the engine and fuel operating system equipment, diesel fuel may be treated with corrosion inhibitors and detergents. However, additives could also have an impact on other parameters beyond those that they are intended to boost. In the present study the effect of diesel fuel improvers on fuel’s microbial stability is examined. An additive-free ultra low sulfur diesel (ULSD) was blended with Soybean Fatty Acid Methyl Esters (FAME) and the resulting blend was treated separately with a series of commercially available diesel fuel additives.
X